ТОП 10:

Геометрические характеристики сложных сечений



 

При вычислении геометрических характеристик сложных сечений последние обычно разбивают на отдельные простые части, геометрические характеристики которых известны (для простых фигур они приведены в справочниках). Из основного свойства интеграла суммы следует, что геометрические характеристики сложной фигуры равны сумме геометрических характеристик её составных частей. Заметим, что в случае, когда в сечении имеется отверстие, его геометрические характеристики необходимо вычитать. Также следует учесть, что суммирование или вычитание геометрических характеристик можно производить только в том случае, если они посчитаны относительно одних и тех же осей. Поэтому, если оси простых фигур не совпадают, предварительно необходимо, используя формулы параллельного переноса (10), пересчитать геометрические характеристики относительно одной и той же оси.

Пример. Определить положение главных центральных осей и значения геометрических характеристик относительно них для сложного сечения (рис. 12).

 

 
 

 

 


 

 

 
 

 


Рис. 12

 

Разобьем данное сечение на элементарные фигуры, геометрические характеристики которых известны по справочникам. Оси Х1У1 – центральные оси первой фигуры. Оси Х2У2 – центральные оси второй фигуры.

 

1 фигура – треугольник:

F1=

Sx1=0

Sy1=0

Ix1=

Iy1=

 

Ix1y1=-

 

2 фигура – прямоугольник:

F2 = bh = 4c∙c = 4c2

Sx2=0

Sy2=0

Ix2=

Iy2=

Ix2y2=0

Заметим, что центробежный момент инерции прямоугольника равен нулю, т. к. фигура имеет ось симметрии.

За вспомогательные оси, относительно которых вычисляем координаты центра тяжести всего сечения, принимаем Х1У1.

 

Хс= =

Ус= = - 0,86c

 

По полученным значениям координат центра тяжести находим положение центральных осей всего сечения.

Найдем геометрические характеристики всего сечения относительно центральных осей. Так как оси параллельны, воспользуемся формулами преобразования при параллельном переносе осей.

 

Sxс=0

Syс=0

Ixc =

=(1,5с4 + (0,86с)2∙3с2) + (0,33с4 + (-0,64с)2∙4с2) = 5,69с4

Iyc =

=(0,67с4 + (-0,76с)2∙3с2) + (5,33с4 + (0,57с)2∙4с2) = 9,03с4

Ixcyc =

=(-0,5с4 + (0,86с)∙(-0,76с)∙3с2) + (0 + (-0,64с)∙(0,57с)∙4с2) = -3,92с4

 

Найдем положение главных центральных осей сечения. Для этого определяем угол поворота центральных осей.

 

tg2a= = – 2,35,

a=0,5arctg(- 2,35) = - 33,5°.

 

Так как получили отрицательный угол, то поворачиваем центральные оси по часовой стрелке.

Найдем значения геометрических характеристик относительно главных центральных осей сечения Х0У0:

 

Iх0= Iхc×cos2a - Iхc×sin2a + Iуc×sin2a = 5,69с4 ∙cos2(-33,5) + 3,59c4∙sin(-67) + 9,03с4∙sin2(- 33,5) = 3,4с4 ;

Iу0= Iyc×cos2a + Iхc×sin2a + Ixc×sin2a = 9,03с4∙ cos2(-33,5) – 3,59c4∙sin(-67) + 5,69с4∙ sin2(- 33,5) = 11,32с4;

Iх0= Iхc×cos2a - 0,5×sin2a×(Iyc - Ixc) = - 3,92× cos(-67) – 0,5×sin(-67)×(9,03с4 – 5,69с4) = 0.

 

Статические моменты инерции сечения при повороте осей проходящих через центр тяжести не меняются и остаются равными нулю.

 







Последнее изменение этой страницы: 2017-02-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.168.112.145 (0.004 с.)