Энергия ионизации и сродство к электрону. Электроотрицательность как характеристика свойств элемента. Строение ядра атома. Понятие об изотопах и радиоактивности. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Энергия ионизации и сродство к электрону. Электроотрицательность как характеристика свойств элемента. Строение ядра атома. Понятие об изотопах и радиоактивности.



Энергия ионизации и сродство к электрону. В химических реакциях ядра атомов не подвергаются изменению, электронная же оболочка перестраивается, причем атомы способны превращаться в положительно и отрицательно заряженные ионы. Эта способность может быть количественно оценена энергией ионизации атома и его сродством к электрону.

Энергией ионизации (потенциалом ионизации) I называется количество энергии, необходимое для отрыва электрона от невозбужденного атома с образованием катиона:

X – e → X+

Энергия ионизации измеряется в кДж/моль или в электронвольтах1 эВ = 1,602.10-19 Дж или 96,485 кДж/моль. (эВ). Отрыв второго электрона происходит труднее, чем первого, т.к. второй электрон отрывается не от нейтрального атома, а от положительного иона:

X+ – e → X2+

Поэтому второй потенциал ионизации I2 больше, чем первый (I2>I1). Очевидно, что удаление каждого следующего электрона будет требовать больших энергетических затрат, чем удаление предыдущего. Для характеристики свойств элементов обычно принимают во внимание энергию отрыва первого электрона.

В группах потенциал ионизации уменьшается с увеличением атомного номера элемента.

Это связано с большей удаленностью валентных электронов от ядра и, следовательно, с их более легким отрывом по мере увеличения количества электронных слоев. Величина потенциала ионизации может служить мерой “металличности” элемента: чем меньше потенциал ионизации, тем легче удалить электрон из атома, тем сильнее выражены металлические свойства.

В периодах слева направо заряд ядра возрастает, а радиус атома уменьшается. Поэтому потенциал ионизации постепенно увеличивается, а металлические свойства ослабевают.

Нарушение тенденции возрастания I наблюдается для атомов с целиком заполненным внешним энергетическим подуровнем, либо для атомов, у которых внешний энергетический подуровень заполнен ровно наполовину:

Это свидетельствует о повышенной энергетической устойчивости электронных конфигураций с полностью или наполовину занятыми подуровнями.

Степень притяжения электрона к ядру и, следовательно, потенциал ионизации зависят от ряда факторов, и прежде всего от заряда ядраЗаряд ядра равен порядковому номеру элемента в таблице Менделеева., от расстояния между электроном и ядром, от экранирующего влияния других электронов. Так, у всех атомов, кроме элементов первого периода, влияние ядра на электроны внешнего слоя экранировано электронами внутренних слоев.

Поле ядра атома, удерживающее электроны, притягивает также и свободный электрон, если он окажется вблизи атома. Правда, этот электрон испытывает отталкивание со стороны электронов атома. Для многих атомов энергия притяжения дополнительного электрона к ядру превышает энергию его отталкивания от электронных оболочек. Эти атомы могут присоединять электрон, образуя устойчивый однозарядный анион.

Энергию отрыва электрона от отрицательного однозарядного иона в процессе

X– – e → X0

называют сродством атома к электрону (A), измеряемым в кДж/моль или эВ1 электронвольт = 1,602.10-19 Дж или 96,485 кДж/моль.. При присоединении двух и более электронов к атому отталкивание преобладает над притяжением – сродство атома к двум и более электронам всегда отрицательно. Поэтому одноатомные многозарядные отрицательные ионы (O2–, S2–, N3– и т.п.) в свободном состоянии существовать не могут.

Сродство к электрону известно не для всех атомов. Максимальным сродством к электрону обладают атомы галогенов.

Электроотрицательность. Эта величина характеризует способность атома в молекуле притягивать к себе связующие электроны. Электроотрицательность не следует путать со сродством к электрону: первое понятие относится к атому в составе молекулы, а второе – к изолированному атому. Абсолютная электроотрицательность (кДж/моль или эВ1 электронвольт = 1,602.10-19 Дж или 96,485 кДж/моль.) равна сумме энергии ионизации и сродства к электрону: АЭО=I+A.

На практике часто применяется величина относительной электроотрицательности, равная отношению АЭО данного элемента к АЭО лития (535 кДж/моль):

Электроотрицательность уменьшается сверху вниз по группе и увеличивается слева направо по периоду.

Наибольшее значение электроотрицательности имеет фтор, наименьшее – цезий. Водород занимает промежуточное положение, т.е. при взаимодействии с одними элементами (например, с F) он отдает электрон, а при взаимодействии с другими (например, с Rb) – приобретает электрон.

Атомное ядро — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что более чем в 10 тысяч раз меньше размеров самого атома. Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным h/2=h/4π ℏ / 2 = h / 4 π {\displaystyle \hbar /2=h/4\pi } и связанным с ним магнитным моментом. Единственный стабильный атом, не содержащий нейтронов в ядре — лёгкий водород (протий).

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.
В некоторых редких случаях могут образовываться короткоживущие экзотические атомы, у которых вместо нуклона ядром служат иные частицы.

Количество протонов в ядре называется его зарядовым числом Z {\displaystyle Z} Z — это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом NN {\displaystyle N}NNNNNNNNNJ. Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом A (A=N+Z) A {\displaystyle A} ЫФA A = N + Z {\displaystyle A=N+Z} и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами

Изотопы — разновидности атомов (и ядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N).

Радиоактивный распад — спонтанное изменение состава (заряда Z, массового числа A) или внутреннего строения нестабильных атомных ядер путём испускания элементарных частиц, гамма-квантов и/или ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие ядра (нуклиды, изотопы и химические элементы) радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

8. Химическая связь и способы её образования. Донорно-акцепторная, ионная связь. Водородная связь, её особенности.

Химическая связь - это взаимодействие двух атомов, осуществляемое путем обмена электронами. При образовании химической связи атомы стремятся приобрести устойчивую восьмиэлектронную (или двухэлектронную) внешнюю оболочку, соответствующую строению атома ближайшего инертного газа. Различают следующие виды химической связи: ковалентная (полярная и неполярная; обменная и донорно-акцепторная), ионная, водородная и металлическая.

Донорно-акцепторное взаимодействие — перенос заряда между молекулами донора и акцептора без образования между ними химической связи (обменный механизм); или передача неподеленной электронной пары от донора к акцептору, приводящей к образованию связи (донорно-акцепторный механизм).

Ионная связь — не прочная химическая связь, возникающая в результате электростатистического притяжения катионов и анионов - образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей, при которой общая электронная пара переходит преимущественно к атому с большей электроотрицательностью. Это притяжение ионов как разноимённо заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %. Ионная связь — крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу, образуются ионы.

Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

9. Ковалентная связь (простая, кратная, Сигма (σ)-, пи (π)-связи, полярность связи, направленность). Гибридизация электронных орбиталей, геометрическая конфигурация молекул.

Простая ковалентная связь. Для её образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью. Такую связь имеют простые вещества, например: О2, N2, Cl2. Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например, в молекуле PH3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.

Если атомы различны, то степень владения обобществлённой парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами, то такое соединение называется ковалентной полярной связью.

Кратность (или порядок) ковалентной связи между двумя атомами — это число электронных пар, непосредственно связывающих эти атомы. Если такая пара одна, то говорят об одинарной связи. Например, атом водорода во всех соединениях связан одинарной связью, поскольку он всегда одновалентен (его валентная оболочка вмещает лишь одну электронную пару). Но бывает, что одни и те же атомы соединены двумя СЭП, и тогда говорят, что связь между этими атомами двойная. В молекуле углекислого газа каждый атом кислорода образует двойную связь с атомом углерода:

O ═ C ═ O

Расходуя на связь два валентных электрона из шести, атом кислорода оставляет с противоположной стороны две неподелённые электронные пары (на схеме они не обозначены). Атом углерода при этом расходует все четыре валентных электрона на образование связей; взаимное отталкивание СЭП приводит к валентному углу в 180° (молекула имеет линейное строение). Тройная связь присутствует, например, в молекуле азота:

N ≡ N

Как и в молекуле NH3, каждый атом азота здесь трёхвалентен и сохраняет одну неподелённую электронную пару.

Сигма (σ)-, пи (π)-связи — приближенное описание видов ковалентных связей в молекулах различных соединений, σ-связь характеризуется тем, что плотность электронного облака максимальна вдоль оси, соединяющей ядра атомов. При образовании π-связи осуществляется так называемое боковое перекрывание электронных облаков, и плотность электронного облака максимальна «над» и «под» плоскостью σ-связи. Для примера возьмем этилен, ацетилен и бензол.

Полярность химических связей — характеристика химической связи (как правило, ковалентной), показывающая изменение распределения электронной плотности в пространстве вокруг ядер в сравнении с распределением электронной плотности в образующих данную связь нейтральных атомах.

Можно количественно оценить полярность связи в молекуле. Трудность точной количественной оценки состоит в том, что полярность связи зависит от нескольких факторов: от размеров атомов и ионов соединяющихся молекул; от числа и характера связи уже имевшихся у соединяющихся атомов до их данного взаимодействия; от типа структуры и даже особенностей дефектов их кристаллических решёток. Такого рода расчёты производятся различными методами, которые в общем-то дают примерно одинаковые результаты (величины). Например, для HCl установлено, что на каждом из атомов в этой молекуле имеется заряд, равный 0,17 заряда целого электрона. На водородном атоме +0,17, а на атоме хлора −0,17.

В качестве количественной меры полярности связи чаще всего используются так называемые эффективные заряды на атомах.

Эффективный заряд определяется как разность между зарядом электронов, находящимся в некоторой области пространства вблизи ядра, и зарядом ядра. Однако эта мера имеет лишь условный и приблизительный [относительный] смысл, поскольку невозможно однозначно выделить в молекуле область, относящуюся исключительно к отдельному атому, а при нескольких связях — к конкретной связи.

Направленность ковалентной связи означает, что связь образуется в направлении максимального перекрытия электронных облаков. Относительно линии соединяющей центры атомов образующих связь различают: σ- и π-связи.

σ-связь: образована перекрыванием АО по линии соединяющей центры взаимодействующих атомов, т.е. симметрична относительно линии, проходящей через атомные ядра в молекуле;

π-связь – это связь, возникающая в направлении оси перпендикулярной прямой, соединяющей ядра атома, т.е. симметрична относительно плоскости, в которой расположены ядра.

Направленность связи обусловливает пространственную структуру молекул, т. е. их геометрическую форму.

Угол связи – угол между воображаемыми прямыми проходящими через ядра двух химически взаимосвязанных соседних атомов.

Если в качестве признака химической связи выбрать степень перераспределения электронной плотности между атомами при образовании химической связи, то можно выделить неполярную, полярную и сильно полярную. Неполярная и полярная связи относятся к ковалентной химической связи, а сильно полярная химическая связь – ионная связь.

Неполярная ковалентная связь также называется гомеополярной, и она образована одинаковыми атомами. В такой ситуации электронная плотность расположена симметрично между атомами. Например, Н2.

Полярная ковалентная связь также называется гетерополярной и образована разными атомами. В такой ситуации возникает смещение электронной плотности в сторону более электроотрицательного атома. В такой ситуации молекула превращается в диполь: диполь – это система, в которой имеется два электрических заряда, равных по величине, но противоположных по знаку, расположенных на некотором расстоянии друг от друга. Например, HCl.

Произведение длины диполя l (расстояния между полюсами в молекуле) и величины заряда q называется дипольным моментом μ.

μ= q l

Чем больше длина диполя, т.е. её дипольный момент, тем больше полярность молекулы.

Дипольный момент направлен от положительного конца диполя к отрицательному, поэтому дипольный момент многоатомной молекулы следует рассматривать как векторную сумму дипольных моментов связей: он зависит не только от полярности каждой связи, но и от взаимного расположения этих связей.

10. Основы термодинамики химических реакций: термодинамические функции (энтальпия, энтропия, свободная энергия Гиббса). Теплота образования.

При протекании химических реакций происходит перестройка энергетических уровней. Разрушаются одни связи в молекулах и образуются другие. Все это требует определенных энергетических затрат. Превращение одних видов энергии и работы в другие, а также направление и пределы самопроизвольного протекания химических процессов изучает химическая термодинамика. Объектом изучения химической термодинамики является система.

Система – это совокупность взаимодействующих веществ, мысленно или фактически обособленная от окружающей среды (пробирка, автоклав).

Системы бывают: гомогенные – состоящие из одной фазы (однородный раствор поваренной соли) и гетерогенные – состоящие из нескольких фаз (вода со льдом).

Фаза – часть системы, однородная по составу и свойствам и отделенная от других частей системы поверхностью раздела.

В химической термодинамике рассматриваются системы: изолированные – не обменивающиеся с окружающей средой веществом и энергией; закрытые – обменивающиеся энергией с окружающей средой и не обменивающиеся веществом. Существуют открытые системы, которые обмениваются веществом и энергией с окружающей средой, это живые организмы. Но они не рассматриваются в химической термодинамике.

Состояние системы можно охарактеризовать термодинамическими параметрами, к которым относятся: температура, давление, концентрация, плотность, объем, масса.

Если состояние системы характеризуется постоянными и неизменными во времени значениями термодинамических параметров во всех точках системы, то она находится в состоянии равновесия. При изменении одного из параметров состояния система переходит в состояние нового равновесия. Химическая термодинамика рассматривает переходы из одного состояния в другое, при этом могут изменяться или оставаться постоянными некоторые параметры:

· изобарические – при постоянном давлении;

· изохорические – при постоянном объеме;

· изотермические – при постоянной температуре;

· изобарно - изотермические – при постоянном давлении и температуре и т.д.

Термодинамические свойства системы можно выразить с помощью нескольких функций состояния системы, называемых характеристическими функциями: внутренней энергии U, энтальпии H, энтропии S, энергии Гиббса G, энергии Гельмгольца F. Характеристические функции обладают одной особенностью: они не зависят от способа (пути) достижения данного состояния системы. Их значение определяется параметрами системы (давлением, температурой и др.) и зависит от количества или массы вещества, поэтому принято относить их к одному молю вещества.

 

Расчет тепловых эффектов химических реакций (закон Гесса, следствие из закона Гесса).

Закон Гесса — основной закон термохимии, который формулируется следующим образом:

Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы). Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.

На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ΔHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:

ΔH1 =ΔH2+ΔH3=ΔH4+ΔH5+ΔH6 Δ H 1 = Δ H 2 + Δ H 3 = Δ H 4 + Δ H 5 + Δ H 6 {\displaystyle \Delta H_{1}=\Delta H_{2}+\Delta H_{3}=\Delta H_{4}+\Delta H_{5}+\Delta H_{6}}

Закон открыт русским химиком Г. И. Гессом в 1840 г.; он является частным случаем первого начала термодинамики применительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.

Следствия из закона Гесса

Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье — Лапласа).

Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):

Δ H o = ∑ (ν i Δ H f, i o) p r o d u c t s − ∑ (ν i Δ H f, i o) r e a c t a n t s {\displaystyle \Delta H^{o}=\sum {(\nu }_{i}\Delta H_{f,i}^{o})_{products}-\sum {(\nu }_{i}\Delta H_{f,i}^{o})_{reactants}}

Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):

Δ H o = ∑ (ν i Δ H c, i o) r e a c t a n t s − ∑ (ν i Δ H c, i o) p r o d u c t s {\displaystyle \Delta H^{o}=\sum {(\nu }_{i}\Delta H_{c,i}^{o})_{reactants}-\sum {(\nu }_{i}\Delta H_{c,i}^{o})_{products}}

Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту. Табличные величины теплот образования и сгорания веществ обычно относятся к т. н. стандартным условиям. Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры

Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.

 

Термодинамический метод определения возможности и направления протекания химических процессов.

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 394; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.31.73 (0.047 с.)