Основные классы неорганических соединений. Номенклатура. Характерные свойства. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные классы неорганических соединений. Номенклатура. Характерные свойства.



Понятия: моль; эквивалент. Основные стехиометрические и газовые законы (закон сохранения массы, эквивалентов, кратных отношений, закон Бойля-Мариотта, закон Гей-Люссака, закон Авогадро). Уравнения Клапейрона, Менделеева-Клапейрона. Парциальное давление газа в смеси. Закон парциальных давлений.

Моль (русское обозначение: моль; международное: mol; устаревшее название грамм-молекула (по отношению к количеству молекул); от лат. moles — количество, масса, счётное множество) — единица измерения количества вещества в Международной системе единиц (СИ), одна из семи основных единиц СИ.

Моль принят в качестве основной единицы СИ XIV Генеральной конференцией по мерам и весам (ГКМВ) в 1971 году.

Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.

Эквивалент вещества или Эквивалент — это реальная или условная частица, которая может присоединять, высвобождать или другим способом быть эквивалентна катиону водорода в кислотно-основных (ионообменных) химических реакциях или электрону в окислительно-восстановительных реакциях.

Закон сохранения массы:

Закон сохранения массы — закон физики, согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

В метафизической форме, согласно которой вещество несотворимо и неуничтожимо, этот закон известен с древнейших времён. Позднее появилась количественная формулировка, согласно которой мерой количества вещества является вес (с конца XVII века — масса).

С точки зрения классической механики и химии, сохраняются общая масса закрытой физической системы, равная сумме масс компонентов этой системы (то есть масса считается аддитивной). Этот закон с большой точностью верен в области применимости ньютоновской механики и химии, так как релятивистские поправки в этих случаях пренебрежимо малы.

В современной физике концепция и свойства массы существенно пересмотрены. Масса более не является мерой количества вещества, а закон сохранения массы тесно связан с законом сохранения внутренней энергии системы. В отличие от классической модели, сохраняется масса только изолированной физической системы, то есть при отсутствии энергообмена с внешней средой. Не сохраняется сумма масс компонентов системы (масса неаддитивна). Например, при радиоактивном распаде в изолированной системе, состоящей из вещества и радиации, совокупная масса вещества уменьшается, но масса системы сохраняется, несмотря на то что масса радиации может быть нулевая.

Закон эквивалентов:

· все вещества реагируют и образуются в эквивалентных отношениях.

· формула, выражающая Закон эквивалентов: m1Э2=m2Э1

Закон кратных отношений:

Если два элемента образуют между собой несколько молекулярных соединений, то масса одного элемента, приходящаяся на одну и ту же массу другого, относятся между собой как небольшие целые числа.

Закон Бойля-Мариотта:

Закон Бойля-Мариотта отражает взаимосвязь между давлением р и объемом V определенного количества газа при постоянной температуре: при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объему газа:

pV = const.

Другими словами, при переходе газа из состояния с параметрами р1 и V1 в состояние с параметрами р2 и V2 (при Т, п = const) выполняется условие:

p1V1=p2V2.

Закон Гей-Люссака:

Закон Гей-Люссака связывает объем газа V с его температурой Т (при р = const): при постоянном давлении объем газа изменяется прямо пропорционально абсолютной температуре:

 

При расчетах обычно используется соотношение

показывающее постоянство отношения объема к температуре при переходе из состояния 1 в состояние 2.

 

Закон Авогадро:

Закон Авогадро — закон, согласно которому в равных объёмах различных газов, взятых при одинаковых температурах и давлениях, содержится одно и то же число молекул.

Уравнение Клапейрона:!!!!!

Уравнение Менделеева-Клапейрона:

Парциальное давление газа в смеси:

Парциальное давление— давление отдельно взятого компонента газовой смеси. Общее давление газовой смеси является суммой парциальных давлений её компонентов.

Парциальное давление газа, растворённого в жидкости, является парциальным давлением того газа, который образовался бы в фазе газообразования в состоянии равновесия с жидкостью при той же температуре. Парциальное давление газа измеряется как термодинамическая активность молекул газа. Газы всегда будут вытекать из области с высоким парциальным давлением в область с более низким давлением; и чем больше разница, тем быстрее будет поток. Газы растворяются, диффундируют и реагируют соответственно их парциальному давлению и не обязательно зависимы от концентрации в газовой смеси.

Закон парциальных давлений:

Парциальное давление идеального газа в смеси равно давлению, которое будет оказываться, если бы он занимал тот же объём, что и вся смесь газов, при той же температуре. Причина этого в том, что между молекулами идеального газа не действуют силы притяжения или отталкивания, их соударения между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. Реально существующие газы очень близко подходят к этому идеалу. Следствием этого является то, что общее давление смеси идеальных газов равно сумме парциальных давлений каждого газа в смеси, как это формулирует закон Дальтона[3]. Например, дана смесь идеального газа из азота (N2), водорода (H2) и аммиака (NH3):

P = P N2 + PH2 + PNH3, где:

P = общему давлению в газовой смеси

PN2 = парциальному давлению азота (N2)

PH2 = парциальному давлению водорода (H2)

PNH3 = парциальному давлению аммиака (NH3)

 

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Zе, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10-8 см, в то время, как диаметр ядра много меньше -10-12 см.

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты, в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома.

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

— квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью.

Постулаты Бора — основные допущения, сформулированные Нильсом Бором в 1913 году для объяснения закономерности линейчатого спектра атома водорода и водородоподобных ионов (формула Бальмера-Ридберга) и квантового характера испускания и поглощения света. Бор исходил из планетарной модели атома Резерфорда.

Первый постулат Бора: атомная система может находиться только в особых стационар­ных, либо квантовых, состояниях, каждому из которых соответствует некоторая энергия En; в стационарном состоянии атом не излучает энергию.

Этот постулат является противоречием классической механике, согласно которой энергия движущихся электронов может быть любой. Также он является противоречием и электродинамике Максвелла, т.к. предполагает возможность ускоренного движения электронов не излучая электромагнитных волн.

Второй постулат Бора: излучение света случается в процессе перехода атома из стационарного со­стояния с большей энергией Ek в стационарное состояние с меньшей энергией En. Энергия излу­ченного фотона равняется разности энергий стационарных состояний:

,

Таким образом, можно вычислить частоту излучения:

,

Поглощая свет, атом переходит из стационарного состояния с меньшим количеством энергии в ста­ционарное состояние с большим количеством энергии.

Квантовые числа:

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел.

 

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. n приобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия возрастает. Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (↑). Два электрона на одной орбитали обладают антипараллельными спинами.

Орбитали:

Название «орбиталь» отражает геометрическое представление о движении электрона в атоме; такое особое название отражает тот факт, что движение электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.

  • Главное квантовое число n может принимать любые целые положительные значения, начиная с единицы (n = 1,2,3, … ∞) и определяет общую энергию электрона на данной орбитали (энергетический уровень):

Энергия для n = ∞ соответствует энергии одноэлектронной ионизации для данного энергетического уровня.

  • Орбитальное квантовое число (называемое также азимутальным или дополнительным квантовым числом) определяет момент импульса электрона и может принимать целые значения от 0 до n - 1 (l = 0,1, …, n - 1). Момент импульса при этом задается соотношением

Атомные орбитали принято называть по буквенному обозначению их орбитального числа:

Значение орбитального квантового числа          
Буквенное обозначение s p d f g
  • Магнитное квантовое число ml определяет проекцию орбитального момента импульса на направление магнитного поля и может принимать целые значения в диапазоне от - l до l, включая 0 (ml = - l … 0 … l):

В литературе орбитали обозначают комбинацией квантовых чисел, при этом главное квантовое число обозначают цифрой, орбитальное квантовое число - соответствующей буквой (см. таблицу ниже) и магнитное квантовое число - выражением в нижеем индексе, показывающем проекцию орбитали на декартовы оси x, y, z, например 2px, 3dxy, 4fz(x2-y2). Для орбиталей внешней электронной оболочки, то есть в случае описания валентных электронов, главное квантовое число в записи орбитали, как правило, опускают.

 

4. Строение электронной оболочки многоэлектронных атомов. Электронные и электронные графические формулы атомов элементов (на примере хлора и марганца в основном и возбужденном состоянии).

 

 

5. Принцип минимума энергии. Правила Клечковского. Их применение. Принцип Паули. Правило Хунда (Гунда). Валентные электроны.

Принцип минимальной энергии. Согласно этому принципу электроны в основном состоянии заполняют орбитали в порядке повышения уровня энергии орбиталей. Первыми заполняются орбитали с минимальными уровнями энергии.

В многоэлектронных атомах электроны испытывают не только притяжение ядер, но и отталкивание электронов, находящихся ближе к ядру и экранирующих ядро от более далеко расположенных электронов. Поэтому последовательность возрастания энергий орбиталей усложняется.

Правило В. Клечковского. Увеличение энергии и соответственно заполнение орбиталей происходит в порядке возрастания суммы квантовых чисел n + l, а при равной сумме – в порядке увеличения числа n. Соответственно этому правилу подоболочки выстраиваются в следующий ряд (см. рис. 3.3):

Исключение составляют d- и f-элементы с полностью и наполовину заполненными подоболочками, у которых наблюдается так называемый провал электронов, например Cu, Ag, Cr, Mo, Pd, Pt.

Принцип запрета Паули. В 1925 г. П. Паули постулировал принцип запрета, согласно которому в атоме не может быть двух электронов, обладающих одинаковым набором квантовых чисел n, l, ml и ms. Отсюда следует, что на каждой атомной орбитали может быть не более двух электронов, причем они должны иметь противоположные (антипараллельные) спины, т.е. допускается заполнение ↑↓ и не допускается заполнение ↓↓ и ↑↑.

Правило Гунда. В соответствии с этим правилом заполнение орбиталей одной подоболочки в основном состоянии атома начинается одиночными электронами с одинаковыми спинами. После того как одиночные электроны займут все орбитали в данной подоболочке, заполняются орбитали вторыми электронами с противоположными спинами. Например, у атома азота орбитали в основном состоянии заполняют р-подоболочку 2р3 по одному электрону

В химии валентными электронами называют электроны, находящиеся на внешней (валентной) оболочке атома. Валентные электроны определяют поведение химического элемента в химических реакциях. Чем меньше валентных электронов имеет элемент, тем легче он отдаёт эти электроны (проявляет свойства восстановителя) в реакциях с другими элементами. И наоборот, чем больше валентных электронов содержится в атоме химического элемента, тем легче он приобретает электроны (проявляет свойства окислителя) в химических реакциях при прочих равных условиях. Полностью заполненные внешние электронные оболочки имеют инертные газы, которые проявляют минимальную химическую активность. Периодичность заполнения электронами внешней электронной оболочки определяет периодическое изменение химических свойств элементов в таблице Менделеева.

Количество валентных электронов (максимальная валентность) равно номеру группы в периодической таблице Менделеева, в которой находится химический элемент (кроме побочных подгрупп).

Периодический закон и система элементов Д.И. Менделеева. Структура периодической системы. Положение металлов и неметаллов в периодической системе элементов. Аномалии в периодической системе элементов (провал электрона, диагональное сходство). Электронные аналоги.

В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от заряда ядра их атомов. Наглядным выражением закона служит периодическая система Д. И. Менделеева.

Рассмотрим связь между положением элемента в периодической системе и электронным строением его атомов. У каждого последующего элемента периодической системы на один электрон больше, чем у предыдущего. Полные записи электронных конфигураций первых двух периодов приведены в табл. 3.1.

Первый период состоит из двух элементов: водорода и гелия. Атомом гелия заканчивается формирование К-оболочки атома, обозначим ее [He]. Электрон, который последним заполняет орбитали атома, называется формирующим, и элемент относится к группе, называемой по формирующему электрону. В данном случае оба элемента имеют формирующие s-электроны и соответственно называются s-элементами.

У элементов второго периода формируется L-оболочка, заполняются s- и p-подоболочки. Формирующими электронами у первых двух элементов являются s-электроны, поэтому Li и Be относятся к s-элементам. Остальные шесть элементов периода входят в число р-элементов, так как формирование их орбиталей заканчивается р-электроном. У элемента Ne полностью заполнена подоболочка, обозначим его электронную конфигурацию как [Ne]. В табл. 1.3 даны в краткой записи электронные конфигурации элементов в основном состоянии. При этом не приводится полная запись электронной конфигурации полностью заполненных подоболочек предыдущих периодов.

Третий период начинается с натрия, электронная конфигурация которого 1s22s22p63s1 и заканчивается аргоном с электронной конфигурацией 1s22s22p63s13р6 [Ar]. Хотя в третьм уровне (оболочка М) имеется подоболочка 3d, которая остается незаполненной, в четвертом периоде начинает формироваться следующая оболочка N (n = 4) и период начинается с s-элемента калия, [Ar]4s1. Это обусловлено тем, что энергия подуровня 4s несколько ниже, чем энергия подуровня 3d (см. рис. 3.3).

В соответствии с правилом Клечковского n+1 у 4s (4) ниже, чем n+1 у 3d (5). После заполнения 4s-подоболочки заполняется 3d-подоболочка. Элементы, начиная со Sc [Ar]3d14s2 до Zn [Ar]3d104s2, имеющие формирующие d-электроны, относятся к d-элементам. Как видно из табл. 3.2, у хрома на 4s-подоболочек остается один электрон, а на 3d-подоболочке вместо четырех оказывается пять d-электронов. Такое явление получило название «провала» электрона c s- на d-подоболочку. Это обусловлено более низкой энергией кофигурации 3d54s2. «Провал» электронов наблюдается и других атомов, например, у атомов Cu, Nb, Mo, Pt, Pd (табл. 3.2).

Четвертый период завершается формированием подоболочки 4р у криптона [Ar]3d104s24p6 или [Kr]. Всего в четвертом периоде 18 элементов.

Пятый период аналогичен четвертому периоду. Он начинается с s-элемента рубидия [Kr]5s1 и заканчивается р-элементом ксеноном [Kr]4d105s25p6 или [Xe] и включает в себя десять 4d-элементов от иттрия до кадмия. Всего в пятом периоде 18 элементов.

В шестом периоде, как и в пятом, после заполнения s-подоболочки начинается формирование d-подоболочки предвнешнего уровня у лантана. Однако у следующего элемента энергетически выгоднее формирование 4f-подоболочки по сравнению с 5d-подоболочкой. Поэтому после лантана следует 14 лантаноидов с формирующими f-электронами, т.е. f –элементов от церия Се [Xe]4f25d06s2 до лутеция Lu [Xe]4f145d16s2. Затем продолжается заполнениеоставшихся орбиталей в 5d-подоболочке и 6р-подоболочке. Период завершает радон [Xe]4f145d106s26p6 или [Rn]. Таким образом, период имеет 32 элемента: два s-элемента, шесть р-элементов, десять d-элементов и четырнадцать f-элементов.

Седьмой период начинается и продолжается аналогично шестому периоду, однако формирование его не завершено. Он также имеет вставную декаду из d-элементов и четырнадцать 5f-элементов (актиноидов). Элементы, начиная со 105 номера, пока не имеют официального названия.

Структура периодической системы. Периодическая структура элементов состоит из периодов, групп и подгрупп. Периодом называется последовательный ряд элементов, размещенных в порядке возрастания заряда ядра атомов, электронная конфигурация которых изменяется от ns1 до ns2np6 (или до ns2 у первого периода). Периоды начинаются с s-элемента и заканчиваются р-элементом (у первого периода s-элементом). Малые периоды содержат 2 и 8 элементов, большие периоды 18 и 32 элемента, седьмой период остается незавершенным.

В системе имеется восемь групп, что соответствует максимальному числу электронов во внешних подоболочках. Группы делятся на главные (основные) и побочные подгруппы. Подгруппы включают в себя элементы с аналогичными электронными структурами (элементы – аналоги). К главным подгруппам (подгруппам А) относятся подгруппы элементов второго периода: Li, Be, B, C, N, O, F и подгруппа благородных газов. К побочным подгруппам (подгруппам В) принадлежат d- и f-элементы. Первые шесть d-элементов (от Sc до Fe) начинают соответствующие подгруппы от подгруппы III (Sc) до подгруппы VIII (Fe). В подгруппу VIII также включаются все элементы семейства железа (Fe, Co, Ni) и их аналоги – платиновые металлы. Медь и ее аналоги, имеющие во внешней s-подоболочке по одному электрону, образуют первую побочную подгруппу, а цинк и его аналоги – вторую побочную подгруппу. Лантаноиди и атиноиды (f-элементы) находятся в III подгруппе в соответствии с особенностями их электронных конфигураций.

Положение металлов и неметаллов:

В Периодической системе химических элементов Д.И. Менделеева металлы располагаются ниже диагонали бериллий – астат. Элементы, расположенные вблизи диагонали, например, бериллий, алюминий, титан, германий, сурьма обладают двойственным характером и относятся к металлоидам. Металлы располагаются в начале периодов, к ним относятся s-элементы 1 и 2 групп, р-элементы 3 группы, все, кроме бора, 4 группы: германий, олово, свинец, 5 группы: сурьма, висмут, а также все d- и f- элементы.

Если в Периодической системе провести диагональ от бора к астату, то справа вверх по диагонали будут находиться элементы -неметаллы, а слева снизу – металлы, к ним же относятся элементы всех побочных подгрупп, лантаноиды и актиноиды. Элементы, расположенные вблизи диагонали, например, бериллий, алюминий, титан, германий, сурьма, обладают двойственным характером и относятся к металлоидам. Элементы-неметаллы: s-элемент – водород; р-элементы 13 группы – бор; 14 группы – углерод и кремний; 15 группы – азот, фосфор и мышьяк, 16 группы – кислород, сера, селен и теллур и все элементы 17 группы – фтор, хлор, бром, йод и астат. Элементы 18 группы – инертные газы, занимают особое положение, они имеют полностью завершенный внешний электронный слой и занимают промежуточное положение между металлами и неметаллами. Их иногда относят к неметаллам, но формально, по физическим признакам.

Проскок электрона - отступления от общей для большинства элементов последовательности заполнения электронных оболочек (1s, 2s, 2p, 3s, 3p, 4s, 3d и так далее), связанные с тем, что эти "нарушения правил" обеспечивают атомам некоторых элементов меньшую энергию по сравнению с заполнением электронных оболочек "по правилам".

 

Объясняется это тем, что энергетически более выгодно, когда в атоме имеется наполовину или полностью заполненный подуровень(р3; р6;d5;d10;f7; f14). Поэтому в атомах элементов, у которых строение электронной оболочки близко к вышеуказанному, может наблюдаться преждевременное заполнениеd- подуровня за счёт проскока (или провала) электрона с внешнегоs- подуровня на нижележащий (предвнешний)d- подуровень (закономерные проскоки).

Диагональное сходство — сходство между собой элементов, находящихся в Периодической системе элементов по диагонали друг от друга, а также соответствующих им простых веществ и соединений. Наиболее ярко выражено в парах литий-магний, бериллий-алюминий, бор-кремний. Элементы в указанных парах (особенно последних двух) схожи между собой гораздо сильнее, чем с соседними элементами в тех же группах. Сходство объясняют близкими отношениями заряд/радиус иона.

Следствия из закона Гесса

Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье — Лапласа).

Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты (ν):

Δ H o = ∑ (ν i Δ H f, i o) p r o d u c t s − ∑ (ν i Δ H f, i o) r e a c t a n t s {\displaystyle \Delta H^{o}=\sum {(\nu }_{i}\Delta H_{f,i}^{o})_{products}-\sum {(\nu }_{i}\Delta H_{f,i}^{o})_{reactants}}

Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):

Δ H o = ∑ (ν i Δ H c, i o) r e a c t a n t s − ∑ (ν i Δ H c, i o) p r o d u c t s {\displaystyle \Delta H^{o}=\sum {(\nu }_{i}\Delta H_{c,i}^{o})_{reactants}-\sum {(\nu }_{i}\Delta H_{c,i}^{o})_{products}}

Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту. Табличные величины теплот образования и сгорания веществ обычно относятся к т. н. стандартным условиям. Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры

Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.

 

Термодинамический метод определения возможности и направления протекания химических процессов.

 

 

Химическое равновесие. Закон действующих масс для равновесия. Константа равновесия. Смещение химического равновесия. Принцип Ле Шателье. Примеры его действия.

Химическое равновесие — состояние химической системы, в которой протекает одна или несколько химических реакций, причём скорости в каждой паре прямой-обратной реакции равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.

Закон действующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ.

Константа равновесия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями (либо, в зависимости от условий протекания реакции, парциальными давлениями, концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.

Принцип работы: если на систему воздействовать, то она противодействует.

Положение химического равновесия зависит от следующих параметров реакции: температуры, давления и концентрации. Влияние, которое оказывают эти факторы на химическую реакцию, подчиняется закономерности, которая была высказана в общем виде в 1885 году французским учёным Ле Шателье.

Факторы, влияющие на химическое равновесие:

1) температура

При увеличении температуры химическое равновесие смещается в сторону эндотермической (поглощение) реакции, а при понижении — в сторону экзотермической (выделение) реакции.

CaCO3=CaO+CO2 -Q t↑ →, t↓ ←

N2+3H2↔2NH3 +Q t↑ ←, t↓ →

2) давление

При повышении давления химическое равновесие смещается в сторону меньшего объёма веществ, а при понижении — в сторону большего объёма. Этот принцип действует только на газы, т. е. если в реакции участвуют твёрдые вещества, то они в расчёт не берутся.

CaCO3=CaO+CO2 P↑ ←, P↓ →

1моль=1моль+1моль

3) концентрация исходных веществ и продуктов реакции

При увеличении концентрации одного из исходных веществ химическое равновесие смещается в сторону продуктов реакции, а при понижении концентрации — в сторону исходных веществ.

S+O2=SO2 [S],[O2]↑ →, [SO2]↑ ←

Катализаторы не влияют на смещение химического равновесия.

Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.

Анри Ле Шателье (Франция) сформулировал этот термодинамический принцип подвижного равновесия, позже обобщённый Карлом Брауном.

Принцип применим к равновесию любой природы: механическому, тепловому, химическому, электрическому (эффект Ленца, явление Пельтье).

Если внешние условия изменяются, это приводит к изменению равновесных концентраций веществ. В этом случае говорят о нарушении или смещении химического равновесия.

Химическое равновесие смещается в ту или иную сторону при изменении любого из следующих параметров:

температуры системы, то есть при её нагревании или охлаждении

давления в системе, то есть при её сжатии или расширении

концентрации одного из участников обратимой реакции

 

 

Сила кислот и оснований.

Сила кислот определяется их способностью отдавать протон. Мерой этой способности служит константа кислотности (Ka). В водном растворе для произвольной кислоты HB функцию основания выполняет вода:

В дальнейшем любую кислоту будем обозначать «а», а основание - «b». В обозначении иногда приписывают индекс «1» или «2», при этом у основания и кислоты одной сопряженной пары индекс одинаковый. Если одну из протолитических пар образует вода, то ей приписывают индекс «2». Важно отметить, что действующие концентрации значительно выше, чем концентрации H+ и OH-.

Константа равновесия в соответствии с законом действующих масс

Чем больше константа кислотности, тем сильнее кислота. Например, уксусная кислота сильнее, чем циановодородная кислота, так как Ka(CH3COOH) = 1,74•10-5, Ka(HCN) = 1•10-9. Для удобства расчетов и записи часто пользуются не самими константами, а их отрицательными десятичными логарифмами: pKa = -lgKa. Величину pKa называют силовым показателем кислоты. Например, pKa(CH3COOH) = = -lgKa(CH3COOH) = -lg1,74•10-5 = 4,76; pKa(HCN) = 9. Чем больше величина pKa, тем слабее кислота.

Сильные кислоты практически полностью отдают свой протон молекулам воды, поэтому кислотой, присутствующей в растворе, является фактически ион гидроксония.

В связи с этим при расчете pH раствора сильной одноосновной кислоты концентрацию протонов приравнивают к концентрации кислоты

c (H3O+) = c (HB).

В растворах слабых кислот концентрация ионов гидроксония значительно ниже концентрации кислоты. Она рассчитывается на основании

обеих частей этого уравнения дает формулу для расчета pH растворов слабых кислот: pH = 0,5(pKa - lg c (HB)).

 

Гидролиз солей.

Химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита и сопровождающееся изменением рН раствора, называется гидролизом солей.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Тип гидролиза соли зависит от природы основания и кислоты, образующих соль. Возможны 3 типа гидролиза солей.

Гидролиз по аниону идет, если соль образована катионом сильного основания и анионом слабой кислоты.

Например, соль СН3СООNa образована сильным основанием NaOH и слабой одноосновной кислотой СН3СООН. Гидролизу подвергается ион слабого электролита СН3СОО–.

Ионно-молекулярное уравнение гидролиза соли:

СН3СОО– + НОН «СН3СООН + ОН–

Ионы Н+ воды связываются с анионами СН3СОО– в слабый электролит СН3СООН, ионы ОН– накапливаются в растворе, создавая щелочную среду (рН>7).

Молекулярное уравнение гидролиза соли:

CH3COONa + H2O «CH3COOH + NaOH

Гидролиз солей многоосновных кислот протекает по стадиям, образуя в качестве промежуточных продуктов кислые соли.

Например, соль K2S образована сильным основанием КОН и слабой двухосновной кислотой H2S. Гидролиз этой соли протекает в две стадии.

1 стадия: S2– + HOH «HS + OH

K2S + H2O «KHS + KOH

2 стадия: HS-– + HOH «H2S + OH

KHS + H2O «H2S + KOH

Реакция среды щелочная (pH>7), т.к. в растворе накапливаются ОН–-ионы. Гидролиз соли идет тем сильнее, чем меньше константа диссоциации образующейся при гидролизе слабой кислоты (табл.3). Таким образом, водные растворы солей, образованных сильным основанием и слабой кислотой, характеризуются щелочной реакцией среды.

Гидролиз по катиону идет, если соль образована катионом слабого основания и анионом сильной кислоты. Например, соль CuSO4 образована слабым двухкислотным основанием Cu(OH)2 и сильной кислотой H2SO4. Гидролиз идет по катиону Cu2+ и протекает в две стадии с образованием в качестве промежуточного продукта основной соли.

1 стадия: Cu2+ + HOH «CuOH+ + H+

2CuSO4 + 2H2O «(CuOH)2SO4 + H2SO4

2 стадия: CuOH+ + HOH «Cu(OH)2 + H+



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 280; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.142.115 (0.124 с.)