Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Классы действия гормонов и домены гормонального контроляСодержание книги
Поиск на нашем сайте
Эволюция механизмов гормонального контроля в многоклеточных организмах обусловила развитие двух четко определенных регуляторных систем, интегрирующих функции клеток-мишеней эндокринных воздействий (рис. 4—1). Более широко распространена система, контролируемая стероидными гормонами, которые регулируют ферменты, определяющие метаболическую и секреторную активность огромного числа периферических тканей. Эти относительно неполярные и гидрофобные гормоны секретируются надпочечниками и половыми железами и разносятся кровью в связанном с белками плазмы виде, чтобы сохранять эффективную концентрацию свободного стероида во внеклеточной жидкости. Свободные стероиды, по-видимому, диффундируют во все клетки, но оказывают свое метаболическое действие только на ткани-мишени, обладающие специфическими внутриклеточными связывающими белками. Эти внутриклеточные рецепторы в свою очередь опосредуют влияние стероида на ядерные процессы, определяющие синтез белка. В некоторых клетках эффекты стероидов проявляются синтезом регуляторных ферментов, контролирующих метаболические реакции, что подтверждается действием кортикостероидов на углеводный и белковый обмен. В других, более специализированных, тканях стероиды ответственны за клеточную дифференцировку и образование специфических белков, высвобождаемых в кровь или утилизируемых местно для вторичных процессов, что наблюдается в репродуктивных тканях, находящихся под контролем половых стероидов. Как правило, стероиды надпочечников индуцируют образование ферментов, контролирующих внутриклеточные метаболические функции, тогда как половые стероиды стимулируют также синтез белков, секретируемых клеткой-мишенью и участвующих в механизме размножения. Эти две крайности значительно перекрываются, и многие эффекты половых стероидов оказываются связанными с регуляцией внутриклеточных метаболических процессов в периферических тканях-мишенях. Анализ действия половых стероидов, таких, как эстрадиол и прогестерон, на синтез белков яйцеводов, в том числе на овальбумин и авидин, привел к существенному прогрессу в понимании молекулярной биологии эффектов стероидных гормонов. Свойства и действия тиреоидных гормонов во многих отношениях аналогичны таковым стероидов, несмотря на их очевидное сходство с пептидными гормонами и аминокислотными трансмиттерами. Тиреоидные гормоны, например, обладают липофильными свойствами, что более характерно для стероидов, чем для пептидных гормонов с их гидрофильной природой. Подобно этому, тиреоидные гормоны в крови в основном связаны со специфическими белками плазмы и диффундируют в свои клетки-мишени через небольшой пул свободного внеклеточного гормона. Тиреоидные гормоны также действуют путем связывания с внутриклеточными рецепторами и, подобно стероидам, оказывают в основном свое действие путем регуляции ядерных процессов, что приводит к изменению биосинтетической и метаболической активности клетки-мишени [2]. В отличие от преимущественно ядерных эффектов стероидных и тиреоидных гормонов, действие пептидных гормонов опосредовано рецепторами клеточной поверхности, регулирующими ферментные системы плазматической мембраны и цитоплазмы. Это справедливо и в отношении простых трансмиттерных молекул, таких, как катехоламины и ацетилхолин, и в отношении многих пептидных, белковых и гликопротеиновых гормонов. Такие молекулы взаимодействуют со специальными участками плазматической мембраны, которые распознают и связывают регуляторные лиганды [3]. Специфическое связывание с этими рецепторами клеточной поверхности изменяет активность связанных с мембраной эффекторных ферментов, которые, контролируя мембранные и/или цитоплазматические процессы, опосредуют тем самым острые и долговременные изменения функции клетки-мишени. В некоторых тканях-мишенях, таких, как зависимые от гипофиза периферические эндокринные органы (надпочечники, щитовидная и половые железы), от действия пептидных гормонов зависит сохранение клеточной дифференцировки и функции. В этом смысле, тропные гормоны гипофиза (АКТГ, ТТГ, ФСГ) обладают некоторым функциональным сходством с половыми стероидами, поддерживающими дифференцированное состояние и секреторную активность гормонзависимых клеток-мишеней. Другие пептидные гормоны, такие, как инсулин, пролактин и СТГ, по своей функции больше напоминают стероидные гормоны надпочечников, так как вызывают быстрые и долговременные изменения метаболических процессов, а не обеспечивают дифференцировку клеток-мишеней. Приведенные обобщения относительно метаболических эффектов стероидных, тиреоидных и пептидных гормонов, удобны для широкой функциональной классификации гормональных эффектов, но не следует упускать из виду областей перекрывания биохимических функций этих разных классов лигандов. По существу гормоны представляют собой циркулирующие «сигналы» или информационные посылки, которые, будучи узнанными и связанными соответствующими поверхностными или внутриклеточными рецепторами, вызывают запрограммированные реакции своих клеток-мишеней. Проводить общее различие между стероидными и тиреоидными гормонами, с одной стороны, и пептидными гормонами, с другой, как регуляторами «ядерных» и «цитоплазматических» процессов соответственно удобно для дифференцирования крайних особенностей действия этих лигандов. В то же время известно, что стероидные и тиреоидные гормоны оказывают и вне-ядерное действие, а некоторые пептидные гормоны влияют, по-видимому, и на экспрессию генов. В связи с этим с позиций способности регулировать метаболическую активность клетки и вызывать функциональные реакции на стимуляцию, два общих класса гормонов не имеют абсолютных различий.
РЕЦЕПТОРЫ ПЕПТИДНЫХ ГОРМОНОВ ОПРЕДЕЛЕНИЯ И ОБЩИЕ ЗАМЕЧАНИЯ Пептидные гормоны и молекулы трансмиттеров оказывают свое действие на клетки-мишени, связываясь прежде всего со специфическими, обладающими высоким сродством, рецепторными участками на плазматической мембране. Существование таких рецепторов обнаружено прямыми исследованиями по связыванию радиоактивных лигандов в огромном числе клеток-мишеней пептидных гормонов и нейротрансмиттеров. В некоторых тканях насыщенность специфических связывающих мест меченым гормоном коррелирует с активацией характерных для клеток-мишеней реакций, что указывает на биологическую значимость таких мест в качестве рецепторов гормонов. В других тканях пептидные рецепторы идентифицированы условно только по высокому сродству и специфичности связывания биологически активных форм гормональных гомологов. Применение конкурентных антагонистов (если они существуют), блокирующих как связывание гормона, так и последующую реакцию клетки-мишени, позволило получить дополнительные доказательства биологической значимости нескольких гормональных рецепторов. Некоторые рецепторные места, например для ацетилхолина и катехоламинов, охарактеризованы с помощью меченых антагонистов. Относительно низкое сродство ацетилхолиновых рецепторов к холинергическим лигандам или низкая концентрация специфических b-адренергических мест на клетках-мишенях создают трудности для характеристики этих рецепторов путем исследований с применением меченых агонистов.
Рис. 4—2. Концепция, предложенная Sutherland, согласно которой гормону отводят роль первого медиатора, а цАМФ (или другим веществам) — второго (внутриклеточного) медиатора, с помощью которого осуществляется действие пептидных гормонов (Sutherland, Robison [4] в модификации).
Мнение о клеточной мембране как о месте действия пептидных гормонов сформировалось на основании наблюдений Sutherland, согласно которым взаимодействие катехоламинов с плазматической мембраной эритроцитов голубя приводит к активации аденилатциклазы [4]. После этого было показано, что многие пептидные гормоны связываются с рецепторами плазматической мембраны и влияют на локализованную в ней активность, такие, как аденилатциклаза или механизмы ионного транспорта (рис. 4—2). О поверхностной локализации рецепторов пептидных гормонов свидетельствует и тот факт, что кратковременное воздействие гормона вызывает длительную реакцию клеток-мишеней, которую можно отнести за счет связанного гормона, а также способность специфических антисывороток быстро прекращать действие пептидных гормонов in vitro. Известно также, что ферменты или другие агенты, влияющие на мембранные белки и липиды, модифицируют или ликвидируют способность пептидных гормонов стимулировать аденилатциклазу. Наиболее веские доказательства локализации рецепторов пептидных гормонов на плазматической мембране были получены в авторадиографических исследованиях и прямых опытах по связыванию меченых биологически активных гормонов с препаратами мембран или интактными клетками. Эти подходы позволили точно выяснить локализацию и параметры связывания клеточных рецепторных участков, а также их функциональную связь с реакциями клетки-мишени. Способность пептидных гормонов взаимодействовать с клетками-мишенями (или наоборот) должна зависеть от присутствия специфических участков связывания на плазматической мембране (рецепторов), которые извлекают несущие информацию молекулы из внеклеточной жидкости. Так, «осведомленность» клеток пучковой зоны коры надпочечников в отношении гипофизарных регулирующих влияний определяется концентрацией и профилем секреции АКТГ, поступающего к надпочечным железам. Чрезвычайно низкие концентрации (около 10~10 M) гипофизарных гормонов в крови при миллионнократном избытке других белков требуют, чтобы рецепторы клеток-мишеней обладали как высокой специфичностью (позволяющей узнавать гормон), так и высоким сродством к гормону (позволяющим связывать его при низкой концентрации). Хорошо изученный класс рецепторов для «традиционных» пептидных гормонов (таких, как тропные пептиды гипофиза и гормоны желудочно-кишечного тракта) пополнился аналогичными участками для местных и дистантных трансмиттерных молекул (таких, как ацетилхолин, катехоламины и простагландины), а позднее и для группы, состоящей примерно из 20 нейропептидов (как ранее известных, так и недавно обнаруженных), которые регулируют, по-видимому, функцию периферической и центральной нервной системы. Это огромное число «пептидных» гормонов характеризуется высоким зарядом и относительной гидрофильностью, отсутствием значительного связывания с белками плазмы и способностью связываться со специфическими распознающими участками на открытой области рецепторных молекул. встроенных в плазматическую мембрану клеток-мишеней. Считают, что другая специализированная область внутренней, ассоциированной с мембраной, части рецепторов пептидных гормонов взаимодействует с внутримембранной частью эффекторных молекул или ферментов, таких, как аденилатциклаза, чей каталитический домен доступен с внутренней, цитоплазматической, поверхности клеточной мембраны. Хотя в настоящее время известно, что многие пептидные гормоны после связывания с поверхностными рецепторами все же проникают в клетку, первоначальное взаимодействие с наружной поверхностью плазматической мембраны является необходимым условием стимуляции реакций клеток-мишеней, поскольку внутриклеточное введение пептидных гормонов не вызывает характерных реакций таких клеток. За связыванием гормона с поверхностным рецептором наступает активация одной или более мембранных эффекторных систем, определяющая изменения в механизмах транспорта и распределения ионов, а также активацию цитоплазматических процессов, которые регулируют функцию клетки-мишени. Многие из этих этапов активации включают, по-видимому, фосфорилирование мембранных или цитоплазматических белков, что приводит к изменению ферментативных функций, ответственных за транспорт пли метаболизм молекул, играющих важную роль в клеточной активности. Главным мембранным ферментом, регулируемым пептидными гормонами, является аденилатциклаза, катализирующая образование цАМФ, необходимого для процессов фосфорилирования, возникающих при стимуляции клетки-мишени. К другим мембранным ферментам, на активность которых влияет гормон-рецепторное взаимодействие, относятся ферменты, участвующие в кругообороте инозитола, метилтрансферазы, принимающие участие в метилировании фосфолипидов, а также фосфолипазы, ответственные за деацилирование мембранных фосфолипидов. Последний процесс служит источником образования предшественников (таких, как арахидоновая кислота) простагландинов, тромбоксанов, простациклинов и других активных метаболитов. Наблюдались также гормональные влияния на Na+, К+-зависимую АТФазу, связанную с мембраной протеинкиназу и катехол-О-метилтрансферазу. Таким образом, на уровне плазматической мембраны гормоны индуцируют множество процессов, участвующих в интегрированных реакциях клеток-мишеней на активацию рецепторов гомологичным лигандом.
|
||||
Последнее изменение этой страницы: 2017-01-26; просмотров: 190; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.40.239 (0.01 с.) |