Регуляция внутриклеточной концентрации кальция 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Регуляция внутриклеточной концентрации кальция



Функция кальция в качестве медиатора требует возможности быстрых изменений его концентрации в нужных участках клетки во время действия гормонов с последующим влиянием на конкрет­ные метаболические процессы. Это влияние обычно зависит от модуляции активности специфических регуляторных ферментов, например, перечисленных в табл. 4—4.

 

Таблица 4—4. Некоторые ферменты, активность которых модулируете» кальцием

 

Аденилатциклаза Кальцийзависимая протеинкиназа
Гуанилатциклаза Фосфорилаза киназы
Фосфодиэстераза циклических нуклеотидов Гликогенсинтаза
Ca2+/Mg2+-ATФaaa Пируватдегидрогеназа

 

 

С точки зрения гормонального эффекта влияние кальция на актив­ность аденилат- и гуанилатциклазы, а также фосфодиэстеразы является важнейшим фактором динамического контроля за внут­риклеточным содержанием циклических нуклеотидов. В настоящее время известно, что регуляторные влияния кальция на фермент­ные системы зависят от его связывания белком с низкой молеку­лярной массой, называемым кальций-зависимым регулятором (КЗР) или кальмодулином. Этот белок, первоначально идентифи­цированный в качестве регулятора активности фосфодиэстеразы в головном мозге [55], известен в настоящее время как выполняющий важную промежуточную функцию в контроле кальциевой регуля­ции ферментов во многих тканях. В некоторых случаях активность кальмодулина тесно связана с регулируемым ферментом, и ком­плекс Са2+—кальмодулин служит регуляторным лигандом, опо­средующим эффекты свободного Са2+ на активацию или ингибиро­вание фермента.

Первичным сдвигом при опосредованных кальцием клеточных реакциях на внешние стимулы является поступление ионов каль­ция в цитоплазму клетки. Кальций, участвующий в этом движении, должен поступать из одного, из двух главных источников: либо из внутриклеточных запасов, либо из внеклеточной жидкости, в кото­рой концентрация свободного кальция составляет примерно-1,25 мМ. Хотя внутриклеточная концентрация свободного кальция очень низка (от 0,1 до 10 мкМ), в митохондриях и микросомах концентрация его сравнительно высока (1—20 мМ). Плазматиче­ская мембрана также содержит существенные количества связан­ного кальция и обнаруживает высокий трансмембранный кальцие­вый градиент. Помимо высокого концентрационного градиента между внеклеточным и внутриклеточным кальцием, трансмем­бранный электрический градиент способствует поступлению каль­ция в клетку, хотя скорость притока кальция в отсутствие внешних стимулов обычно низка. Эта ограниченная проницаемость вкупе с наружным перимембранным пулом связанного кальция придает многим клеткам относительную толерантность к измене­ниям концентрации кальция в окружающей среде, особенно в усло­виях покоя. Однако повышенная чувствительность к кальцию, час­то сопровождающая стимуляцию, свидетельствует о том, что важ­ным этапом активации клеток является изменение проницаемости мембран [30]. Таким образом, хотя перераспределение внутренних запасов кальция могло бы служить фактором повышения внутри­клеточного уровня этого иона, основной формой регуляции являет­ся, вероятно, изменение проницаемости плазматической мембраны или процессов транспорта кальция в клетку.

Поступление кальция через плазматическую мембрану может обусловливаться изменением проницаемости мембраны или мем­бранного потенциала под действием стимула. Хотя это, вероятно, имеет меньшее отношение к действию пептидных гормонов, изме­нение мембранного потенциала связано, по-видимому, со способно­стью высоких концентраций калия стимулировать многие гормон-зависимые процессы за счет деполяризации мембраны и увеличе­ния поступления кальция. В общем, увеличение внутриклеточного содержания кальция вследствие изменений мембранной проницае­мости сопровождается выходом кальция из клетки, что можно видеть при проведении опытов с 45Са. Однако изменения потока радиоактивного кальция обычно невелики и могут стимулировать­ся повышением обмена кальция между его внутриклеточными запасами. Прирост количества внутриклеточного кальция в нерв­ных и мышечных клетках активно ликвидируется за счет его обме­на на натрий, а в невозбудимых клетках — за счет работы мем­бранного кальциевого насоса (вероятно, Ca/Mg-АТФазы). В связи с этим стимулы, опосредуемые перераспределением внутриклеточ­ного кальция, часто сопровождаются увеличением выхода 45Са из клетки вследствие быстрого вытеснения мобилизованного кальция через плазматическую мембрану.

 



Поделиться:


Последнее изменение этой страницы: 2017-01-26; просмотров: 166; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.32.40 (0.004 с.)