Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Металлотермические методы получения металлов, сплавов и неметаллов

Поиск

Металлотермическими реакциями называют реакции получения металлов из их оксидов, сульфидов и других соединений за счет взаимодействия этих соединений с металлами-восстановителями при высоких температурах. Этот метод, открытый в 1856 г. Н.Н. Бекетовым, нашел применение, как в промышленности, так и для лабораторного получения металлов, сплавов и некоторых неметаллов. Возможность данного метода определяется физико-химическими свойствами исходных и получаемых веществ и тепловыми условиями проведения реакций.

При комнатной температуре такие реакции практически не протекают, но и при нагревании скорость реакции возрастает слишком незначительно. Только при температуре плавления хотя бы одного из компонентов (чаще всего металла – восстановителя) процесс идет со значительной скоростью. Для осуществления металлотермической реакции порошкообразную смесь оксида и восстановителя нагревают до расплавления одного из компонентов. Если компоненты реакционной смеси могут быть расплавлены за счет тепла, выделяющегося при протекании реакции восстановления, для инициирования реакции используют зажигательные смеси.

Возможность протекания реакции определяется значением ΔG процесса, а в первом приближении – тепловым эффектом реакции восстановления. Тепловой эффект реакции рассчитывают на основании закона Гесса: он равен разности между суммой теплот образования продуктов реакции и суммой теплот образования исходных веществ. Чем больше эта разность, тем полнее идет процесс. Следовательно, более активным восстановителем будет такой металл, при окислении которого выделяется больше тепла. В таблице 3 указаны ΔН образования некоторых оксидов.

Наиболее часто в качестве восстановителя применяются алюминий – малолетучий и сравнительно недорогой металл. Кроме того, реакция образование оксида алюминия очень экзотермична, что дает возможность проводить реакции восстановления многих металлов алюминием без дополнительного нагревания реакционной смеси. Процесс восстановления металлов из их оксидов алюминием называется алюмотермией.

В качестве восстановителей также применяют кальций, магний, и некоторые сплавы на их основе.

 

Таблица 3 - ΔНобр некоторых оксидов из простых веществ

оксид ΔНобр, кДж/моль оксид ΔНобр, кДж/моль оксид ΔНобр, кДж/моль
CuO -162 CrO3 -590 TiO2 -944
PbO -219 BeO -598 Mn2O3 -958
NiO -240 MgO -602 ZrO2 -1101
FeO -265 CaO -635 Fe3O4 -1117
MnO2 -521 MoO3 -745 Cr2O3 -1141
GeO2 -555 Fe2O3 -822 B2O3 -1254
BaO -558 WO3 -843 V2O5 -1552
Bi2O3 -578 Co3O4 -879 Al2O3 -1676
SnO2 -581 SiO2 -908 La2O3 -1793

 

В качестве восстановителей также применяют кальций, магний, и некоторые сплавы на их основе.

С другой стороны, для получения многих металлов из оксидов можно использовать в качестве восстановителя и некоторые неметаллы – кремний, бор. Силикотермия (термическое восстановление металлов кремнием) широко используется в промышленности для получения различных ферросплавов.

При проведении реакций металлотермического восстановления металлов из оксидов необходимо соблюдать следующие требования:

- количество тепла, выделяющегося при реакции, должно быть достаточным для нагревания реакционной массы до температуры, превышающей температуры плавлений как восстанавливаемого металла, так и получающегося оксида;

- точки кипения продуктов реакции должны быть выше температуры, которая развивается при реакции;

- восстанавливаемые оксиды должны быть негигроскопичными и термически устойчивыми.

Расслоение продуктов реакции на два слоя (нижний слой – металл и верхний слой – шлак) возможно только в том случае, когда при реакции выделяется тепла, достаточного для нагревания реакционной массы выше температуры плавления наиболее тугоплавкого продукта реакции. Чем выше температура плавления продуктов и чем больше их теплоемкость и вязкость, тем больше нужно тепла для нагревания смеси до ее расслаивания.

В свою очередь, температура плавления наиболее тугоплавкого из продуктов должна быть ниже той температуры, которая может развиться в процессе реакции.

Время остывания реакционной смеси до температуры плавления наиболее тугоплавкого из продуктов должно быть достаточным для того, чтобы реакция успела закончиться, и чтобы произошло полное расслоение реакционной массы на металл и шлак.

Температуры реакционной массы в момент ее расслоения для некоторых случаев указаны в таблице 4 (их также можно рассчитать по уравнению, см. учебное пособие Ключникова Н.Г. «Руководство по неорганическому синтезу»):

 

Таблица 4 - Температуры реакционной массы в момент расслоения для алюмотермического восстановления некоторых оксидов

Оксид CrO3 MnO2 MoO3 Co3O4 Fe2O3 V2O5 NiO
Т, оС              
Оксид WO3 Cr2O3 SiO2 TiO2 V2O3 B2O3 ZrO2
Т, оС              

 

Из таблицы видно, что при восстановлении большинства оксидов (Fe2O3, Fe3O4, Co3O4, CoO, NiO, MnO2, Mn2O3, Mn3O4, CrO3, MoO3, V2O5, SnO2, CuO и др.) алюминием выделяющейся теплоты вполне достаточно и на нагревание продуктов реакции, и на тепловые потери. В этом случае получается металл, который оседает на дно тигля.

При расслаивании продуктов реакции на шлак и металл можно дать только приближенную оценку температуры. В действительности теплоемкости получаемых материалов несколько отличаются. Соотношение между массой металла и оксида алюминия меняется в зависимости от состава исходного оксида и атомной массы металла. Тепловые потери также меняются. При большом количестве шихты они меньше, а когда берут небольшие массы веществ (в лабораторных опытах), они больше.

Восстановление Mn2O3, MnO2, Co3O4 алюминием протекает с очень большой скоростью, с разбрасыванием реакционной смеси. Как показали опыты, проведенные в замкнутом пространстве, во время реакции большая часть этих оксидов в зоне реакции разлагается с выделением кислорода и образованием Mn3O4, CoO. Выделяющийся кислород разбрасывает реакционную массу и перемешивает продукты, что мешает полному осаждению получаемого металла на дно тигля. Поэтому эти оксиды нельзя применять для получения марганца, кобальта и их сплавов.

Частичное разложение и испарение наблюдается при алюмотермическом восстановлении оксида хрома (VI) и оксида молибдена (VI). Эти оксиды также нельзя непосредственно использовать для алюмотермического получения металлов. Но их можно применять в качестве добавок к различным оксидам при получении сплавов.

Если реакционная масса в результате реакции нагревается недостаточно и выделяющегося тепла не хватает для расслаивания массы на металл и шлак, то применяют различные добавки, снижающие температуру плавления шлака и уменьшающие его вязкость, что облегчает расслаивание смеси на металл и шлак. Например, добавляют вещества, образующие с получаемым оксидом соединения или растворы. Так, фторид кальция предупреждает «запутывание» корольков в шлаке.

Часто к реакционной смеси добавляют различные окислители; при окислении части взятого в избытке металла-восстановителя выделяется тепло, за счет которого температура реакционной смеси повышается, и ее расслоение становится возможным. В качестве окислителей используют хлораты, нитраты, оксиды легко восстанавливаемых металлов, хотя нитраты мало используют, так как продукт легко загрязняется нитридом.

Оксиды часто используют и для получения двух-трехкомпонентных сплавов. При восстановлении некоторых оксидов (Cr2O3, Nb2O5, Ta2O5, SiO2, TiO2, ZrO2, Ba2O3) алюминием выделяющейся теплоты недостаточно для нагревания продуктов реакции выше их температур плавления. Но если к ним добавить необходимое количество легковосстанавливаемых оксидов, то реакция

Cr2O3 + Fe2O3 + 4Al = 2Cr + 2Fe + 2Al 2O3

пройдет и сплав осядет на дно тигля.

При восстановлении оксидов алюминием металлы и неметаллы получаются в сплавленном виде и оседают на дно тигля. При использовании в качестве восстановителя магния и кальция металлы получаются в виде порошка. Это можно объяснить тем, что образующийся оксид магния имеет высокую температуру плавления, во время реакции не расплавляется и изолирует друг от друга отдельные мельчайшие капли металла.

При металлотермическом восстановлении металлов необходимо, чтобы точки кипения продуктов реакции были выше температуры, которая развивается в результате реакции. В ином случае, компонент смеси, имеющий низкую температуру кипения, испаряется и тем самым удаляется из сферы реакции. К числу таких низкокипящих металлов относятся калий, натрий, кадмий и цинк.

Легкая испаряемость исходных оксидов также затрудняет проведение реакции восстановления алюмотермическим путем. Легко испаряются оксиды молибдена и вольфрама (VI), их нужно брать в избытке. Оксид хрома (VI) не только легко испаряется, но и легко разлагается. Для уменьшения испарения оксида молибдена (VI), для снижения температуры реакционной смеси и облегчения выделения металла прибавляют плавни, например, фторид кальция.

При проведении алюмотермических процессов необходимо, чтобы оксиды восстанавливаемых металлов были негигроскопичными (например, оксиды щелочных и щелочноземельных металлов, оксид хрома (VI)) и термически устойчивыми (диоксид марганца, оксид хрома (VI)). В противном случае, реакции проходят с большими потерями из-за разбрасывания реакционной массы выделяющимися парами воды и кислородом.

 

Практическая часть

При проведении алюмотермических реакций необходимо соблюдать некоторые правила предосторожности. Алюминий берут в виде мелких крупинок. Порошкообразный алюминий, имеющийся в продаже под названием алюминиевой пудры, непригоден (он содержит окисленный металл). С неокисленным алюминием реакции протекают слишком бурно, происходит разбрасывание шихты, что снижает выход получаемого металла.

Реакцию проводить в вытяжном шкафу, откуда убрать все легковоспламеняющиеся материалы. Тигель поместить в песок. Работать в кожаных перчатках и защитных очках.

Общая методика.

- подготовка исходных веществ и реактора;

- приготовление зажигательной смеси и заполнение реактора;

- проведение металлотермической реакции;

- разделение продуктов реакции.

Подготовка исходных веществ и реактора. Все вещества, необходимые для реакции (оксиды, алюминий, магний), а также реактор (тигель) необходимо предварительно просушить при 150–200оC (при наличии влаги реакционная масса сильно разбрасывается). Оксиды, которые прочно удерживают влагу, необходимо прокалить в муфеле. После этого оксиды растирают в порошок и отделяют на сите от неразмельченных частичек (если это необходимо). Высушенные и размельченные исходные вещества отвешивают на технических весах и тщательно перемешивают.

При проведении реакции следует брать не менее 25 − 30 г исходных веществ (суммарно). С большим количеством веществ реакции идут лучше, и выход металлов увеличивается. Масса восстановителя (алюминия) должна быть равна теоретически рассчитанной массе.

Чтобы получить металл или сплав без алюминия, следует брать его несколько меньше теоретически рассчитанного на 1 – 2 %.

В качестве восстановителя можно использовать смеси порошкообразных металлов или смеси металлов с кремнием, например:

4Cr2O3 + 3Mg + 6Al = 8Cr + 3Mg(AlO2) 2

Несмотря на то, что алюминат магния плавится при 2135оC, т.е. выше, чем оксид алюминия, реакции со смесью восстановителей идут лучше. Это объясняется тем, что при использовании данной смеси металлов теплоты выделяется больше, чем при использовании в качестве восстановителя алюминия. Например, алюминий оксид хрома (III) непосредственно не восстанавливает ввиду недостаточного количества выделяющейся теплоты. А смесь алюминия с магнием или кальцием этот оксид восстанавливает.

Приготовление зажигательной смеси и заполнение реактора. Зажигательную смесь готовят смешиванием 9 масс. ч. растертого пероксида бария с 1 масс. ч. порошкообразного алюминия. Можно использовать смесь, приготовленную из 4 масс. ч. растертого пероксида бария и 1 масс. ч. порошкообразного алюминия с добавлением 0,7 масс. ч. отдельно растертого хлората калия. Иногда берут 3 масс. ч. растертого нитрата калия и 1,3 масс. ч. алюминиевой пудры. Смешивать эти вещества нужно очень осторожно! Зажигательную смесь хранят в сухой, хорошо закупоренной стеклянной банке; приготовлять ее в больших количествах не рекомендуется.

Заполнение реактора шихтой. В качестве реактора используют магнезиальные или корундовые тигли, так как они термически стойки и вещества при работе с ними меньше загрязняются. Фарфоровые тигли, как правило, разрушаются. Поэтому их нужно помещать в песок, чтобы расплавленная масса не выливалась. Более удобны шамотовые или глиняные тигли, но в этом случае продукт несколько загрязняется кремнием и другими веществами.

Тигель 1 (рис.13) заполняют на ¾ его высоты смесью из оксида и восстановителя. Утрамбовывают массу, делают небольшое углубление и засыпают сверху тонким слоем (1 – 1,5мм) зажигательной смеси. Ленту магния вставляют в углубление, которое, которое затем заполняют зажигательной смесью в форме горки. Если лента магния покрыта слоем оксида, ее следует очистить ножом.

Меры предосторожности. Реакцию проводят в вытяжном шкафу, откуда убирают все легковоспламеняющиеся материалы. Тигель помещают в песок. Работают в защитных очках!

Проведение опыта. Зажигательную смесь поджигают при помощи магниевой ленты, которую можно поджечь длинной лучиной. Если имеются магниевые стружки, то можно поджечь магний, зажав стружки длинными тигельными щипцами, и бросить их на зажигательную смесь.

Разделение продуктов реакции. После окончания реакции тигель охлаждают, разбивают и «королек» металла отделяют от шлака. Иногда кусочки металла остаются в шлаке в виде включений. В этом случае шлак нужно разбить и отделить от него металл; кусочки шлака, приставшие к металлу, удаляют с помощью молотка на стальной плите.

Выход продуктов реакции. Выход продуктов реакции в лабораторных условиях в лучшем случае составляет 80 – 90 % от теоретического (чаще - 60 – 70%). Выход в значительной степени определяется чистотой отделения металла от шлака, в котором металл часто остается в виде мелких трудноотделимых включений.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 1957; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.70.69 (0.011 с.)