Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Задача Баклея - Леверетта и ее обобщенияСодержание книги
Поиск на нашем сайте
В случае одномерного течения несжимаемых несмешивающихся жидкостей в условиях, когда можно пренебречь капиллярным давлением процесс вытеснения допускает простое математическое описание. Для обоих случаев одномерного потока (прямолинейно-параллельного и плоскорадиального) это приводит к классической в теории вытеснения модели Баклея - Леверетта.
В рассматриваемом случае важное значение имеет так называемая функция Баклея - Леверетта или функция распределения потоков фаз f( s ), которая имеет простой физический смысл. Действительно, данная функция представляет собой отношение скорости фильтрации вытесняющей фазы к суммарной скорости, и равна объемной доле потока вытесняющей жидкости (воды) в суммарном потоке двух фаз. Таким образом, функция Баклея – Лаверетта определяет полноту вытеснения и характер распределения нефтегазоконденсатонасыщенности по пласту. Задачи повышения нефте- и газоконденсатоотдачи в значительной степени сводятся к применению таких воздействий на пласт, которые в конечном счете изменяют вид функции f( s ) в направлении увеличения полноты вытеснения.
Вид кривых функции f( s ) и ее производной f/( s ) показан на рис.5.8. С ростом насыщенности f( s ) монотонно возрастает от 0 до 1. Характерной особенностью графика f( s ) является наличие точки перегиба s п, участков вогнутости и выпуклости, где вторая производная f//( s ), соответственно, больше и меньше нуля. Эта особенность в большой степени определяет специфику фильтрационных задач вытеснения в рамках модели Баклея – Леверетта. Зависимость функций f( s ) и f/( s ) от отношения вязкостей фаз m0=m1/ m2 показана рис. 5.9. Из данного рисунка следует, что с ростом отношения вязкостей кривая f( s ) сдвигается вправо и эффективность вытеснения возрастает. Например, применение пен и загустителей, повышающих вязкость нагнетаемой воды, может значительно увеличить нефтеотдачу.
Физической особенностью модели двухфазного вытеснения Баклея – Леверетта является зависимость скорости распространения насыщенности от её величины. Это явление называется дисперсией волн. При 0 £ s £sп большие насыщенности распространяются с большими скоростями, а при sп< s £1 скорость распространения постоянного значения насыщенности начинает уменьшаться. Последнее приводит к тому, что, начиная с некоторого момента времени, распределение насыщенности оказывается многозначным (рис.5.10, кривая 1–2–3–4–5). В области данного участка одному и тому же значению х соответствуют три значения насыщенности s: s1, s2 и s3, что физически невозможно, так как в каждом сечении пласта в любой момент времени может существовать только одна насыщенность. Данная неоднозначность устраняется введением скачка насыщенности (рис.5.11, отрезок 1–3–5). Скорость распространения скачка при этом равна скорости распространения насыщенности. Необходимо отметить, что в действительности математический скачок насыщенности не имеет места. Он появляется в решении вследствие пренебрежения капиллярными силами, за счет которых появляется некоторая “переходная зона” вблизи фронта вытеснения, в которой насыщенность изменяется непрерывно. В общем случае неодномерного вытеснения, а также при учете сжимаемости одной из фаз рассмотренная задача уже не сводится к одному уравнению для насыщенности. Необходимо совместно определять давление и насыщенность. Численные решения таких задач могут быть получены лишь на ЭВМ.
Задача Рапопорта – Лиса Учет капиллярного скачка давления рк, который задается в виде известной эмпирической функции насыщенностей, приводит к теории следующего приближения – модели Рапопорта – Лиса. При этом пренебрегаем силой тяжести. Действие капиллярных сил проявляется в основном вблизи фронта вытеснения, где градиенты насыщенности велики. Эти силы приводят к “размазыванию” фронта, поэтому при учете капиллярных сил скачок насыщенности отсутствует и насыщенность изменяется непрерывно.
Тем не менее, экспериментально было обнаружено существование так называемой стабилизированной зоны насыщенности, которая перемещается, не изменяя своей формы, и распределение насыщенности в ней при постоянной скорости вытеснения – стационарно. В теории Баклея – Лаверетта (при пренебрежении капиллярными силами) стабилизированная зона моделируется скачком. Модель Рапопорта – Лиса позволяет определить ширину данной зоны l (рис. 5.11) и распределение насыщенностей по ней.
|
||||||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 573; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.224.105 (0.006 с.) |