Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Неустановившаяся фильтрация газа в пористой средеСодержание книги
Поиск на нашем сайте
Уравнение Лейбензона Лейбензон Л.С. получил дифференциальное уравнение для определения давления в пласте при неустановившемся движении в нем идеального газа. Для получения требуемого уравнения используем изотермическое приближение и, следовательно, используем уравнение состояния в виде . (4.35) Потенциальная функция, как уже отмечалось ранее, имеет вид . (4.36) Обозначив р2=Р и проделав преобразования общего уравнения нестационарной фильтрации, получим уравнение Лейбензона: . (4.37) По внешнему виду уравнение (4.37) не отличается от уравнения пьезопроводности (4.11), но множитель перед лапласианом переменен. В связи с этим уравнение (4.37) нелинейно в отличие от линейного уравнения пьезопроводности упругой жидкости и аналитически решается приближенно. Для получения приближенного решения используется метод линеаризации, а именно, переменное давление р заменяется на некоторое постоянное: Лейбензон предложил замену на рк (начальное давление в пласте); Чарный – на рср=рmin+0,7(pmax-pmin), где pmax и pmin – максимальное и минимальное давление в пласте за расчетный период. При указанных допущениях решение будет иметь такой же вид, что и в случае упругой жидкости, но при этом в данных решениях давлению р будет соответствовать Р=р2, æ – æ/ = , – . Таким образом, изменение давления при нестационарной фильтрации газа описывается соотношением . (4.38) При малых значениях r2/(4 æ/ t) можно заменить интегрально-показательную функцию логарифмической . (4.39)
Формулы (4.38),(4.39) определяют при фиксированных значениях времени распределение давления вокруг газовой скважины, работающей с постоянным дебитом с момента t =0. Депрессионные кривые идентичны кривым при установившейся фильтрации – имеют максимальную кривизну вблизи скважины (рис.4.9а). Если задать значение r, то можно найти изменение давления в данной точке с течением времени (рис.4.9b). В частности, можно найти давление на забое (при r=rc) после начала работы скважины. Уравнение (4.39) используется для расчета коллекторских параметров газовых пластов методом обработки кривой восстановления давления. Принцип расчета такой же, что и в случае нефтяных скважин, но для получения линейной зависимости по оси ординат надо откладывать не депрессию, а разность квадратов пластового и забойного давлений.
ОСНОВЫ ТЕОРИИ ФИЛЬТРАЦИИ МНОГОФАЗНЫХ СИСТЕМ
|
||||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 404; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.15.70.0 (0.009 с.) |