Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение степени повреждения высокими температурами изгибаемых и сжатых железобетонных конструкций.Содержание книги
Поиск на нашем сайте
инструментальный осмотр Различают предварительный и основной (детальный) осмотр здания, поврежденного пожаром. Во время предварительного осмотра здания определяют участки обрушения и аварийные конструкции и ограждают опасную зону. Основной осмотр участков здания подразделяется на визуальный и инструментальный. В процессе визуального осмотра участки повреждения строительных конструкций сохраняют без изменения, за исключением тех случаев, когда требуется обеспечить безопасность. В процессе осмотра зданий, поврежденных пожаром, определяют состояние железобетонных конструкций, степень их прогрева, наличие скрытых дефектов, трещин. определение глубины прогрева сечений ж/б конструкций Глубину прогревасечений железобетонных элементов ориентировочно можно оценить по изменению звука и цвета бетона, непосредственным испытанием, путем откола бетона по сечению молотком, теплотехническим расчетом, если известны длительность и максимальные температуры огневого воздействия. При такой оценке следует учитывать вид обогрева и массивность элементов. У массивных элементов (например, колонн) часть бетона прогретая до температур 500 – 550 °С при двух- и трехстороннем обогреве, отваливается при ударе молотком. Односторонний обогрев тонкостенных железобетонных конструкций (например, плит) приводит к их относительно равномерному прогреву. В таком случае определить глубину прогрева сечения до температуры 500 – 600 оС непосредственно отколом бетона практически невозможно. При этом тонкостенные элементы находятся в сложном напряженном состоянии, а у бетона по всему сечению конструкции значительно снижаются прочностные и деформативные свойства. Из-за этого перекаленные огнем участки тонкостенных сечений разрушаются от действия собственных масс при демонтаже. определение скрытых дефектов Для определения скрытых дефектовконструкций: трещин, пустот раковин, рыхлого бетона применяют ультразвуковые приборы. Наиболее удобным является прибор УКБ-1М. Он измеряет скорость распространения акустического импульса, изменение его энергии и частотно-амплитудный спектр. Работа прибора основана на том что при прохождении ультразвука через бетон, имеющий неоднородные включения, акустические импульсы затухают интенсивнее, чем в неповрежденном бетоне. Точность измерения амплитуды импульсов зависит от надежности акустических контактов щупов прибора и бетона, поэтому при обследовании наряду с коэффициентом затухания определяют и характер реверберационного процесса в сечении элемента. При дефектоскопии массивных железобетонных конструкций на низких частотах (20 – 150 кГц) чувствительность приборов невелика. Однако некоторые специфические дефекты, вызванные некачественной укладкой бетона, воздействием огня, промерзанием или коррозионными разрушениями, обнаруживаются достаточно четко. В процессе обследования зданий, поврежденных пожаром, выявляют конструкции, имеющие трещины в бетоне с шириной раскрытия более 0,3 мм. Такие трещины в ряде случаев являются внешними признаками повреждений, значительно влияющих на прочность и долговечность железобетонных конструкций. Так, широко раскрытые трещины 2, расположенные в пролете изгибаемых элементов, свидетельствуют о снижении прочности рабочей арматуры или потере предварительных напряжений в ней. Беспорядочные температурно-усадочные трещины 3 и 4 возникают на поверхности бетона, поврежденного огнем. Характер образования трещин и повреждений в элементах железобетонных конструкций от огневого воздействия: а – в ребристых плитах покрытий и перекрытий (прогрев снизу со стороны ребер); б – в прогонах, балках, ригелях; в – в колоннах, стойках, элементах ферм Влияние неглубоких трещин 3 на прочность конструкции менее значительно, чем на их долговечность. Глубокие трещины 4 в сжатой зоне указывают на снижение прочности железобетонных конструкций. Наличие сквозных рваных отверстий в тонкостенных элементах и обрушение (обкол) лещадок 5 бетона площадью 0,001 – 0,03 м2 на глубину 10 – 15 мм с поверхности массивных элементов является следствием взрывообразного разрушения бетона. Эти повреждения характерны для участков непосредственного воздействия пламени на железобетонные конструкции над очагом пожара. Трещины / в стыке ребер плиты с ее полкой возникают от разности температурных напряжений в сечениях элементов. Продольные сквозные трещины 6 вблизи углов конструкций являются признаком отслоения защитного слоя бетона, наиболее поврежденного двухмерным потоком тепла.
Основные виды подобия. Различают подобие геометрическое, кинематическое, материальное, динамическое, тепловое, упругое, пластическое и т.д. Все виды подобия подчиняются трем теоремам. Первая теорема определяет необходимые условия подобия и формулирует свойства подобных систем: явления или системы называются подобными, если равны их соответствующие критерии подобия, составленные из параметров системы. Вторая теорема подобия (π-теорема) доказывает возможность приведения уравнения процесса к критериальному виду: функциональная связь между характеризующими процесс величинами может быть представлена в виде зависимости между составленными из них критериями подобия. Третья теорема подобия показывает пределы закономерного распространения единичного опыта: необходимыми и достаточными условиями подобия являются пропорциональность сходтвенных параметров, входящих в условия однозначности, а также равенство критериев подобия изучаемого в натуре и на модели явления. К условиям однозначности относятся факторы, независящие от механизма физического явления: геометрические свойства; начальные условия; начальное состояние; граничные или краевые условия; взаимодействие с внешней средой
|
||||
Последнее изменение этой страницы: 2017-01-19; просмотров: 171; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.73.167 (0.008 с.) |