Действие физических и химических факторов на микроорганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике. Способы стерилизации, аппаратура. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Действие физических и химических факторов на микроорганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике. Способы стерилизации, аппаратура.



Влияние физических факторов.
Влияние температуры. Различные группы микроорга­низмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при вы­сокой — термофилами.
К психрофильным микроорганизмам относится боль­шая группа сапрофитов — обитателей почвы, морей, пресных водоемов и сточных вод (железобактерии, псевдомонады, све­тящиеся бактерии, бациллы). Некоторые из них могут вызывать порчу продуктов питания на холоде. Способностью расти при низких температурах обладают и некоторые патогенные бакте­рии (возбудитель псевдотуберкулеза размножается при темпера­туре 4 °С). В зависимости от температуры культивирования свой­ства бактерий меняются. Интервал температур, при кото­ром возможен рост психрофильных бактерий, колеблется от -10 до 40 °С, а температурный оптимум — от 15 до 40 °С, прибли­жаясь к температурному оптимуму мезофильных бактерий.
Мезофилы включают основную группу патогенных и услов­но-патогенных бактерий. Они растут в диапазоне температур 10— 47 °С; оптимум роста для большинства из них 37 °С.
При более высоких температурах (от 40 до 90 °С) развива­ются термофильные бактерии. На дне океана в горячих сульфидных водах живут бактерии, развивающиеся при темпе­ратуре 250—300 °С и давлении 262 атм.
Термофилы обитают в горячих источниках, участвуют в процессах самонагревания на­воза, зерна, сена. Наличие большого количества термофилов в почве свидетельствует о ее загрязненности навозом и компос­том. Поскольку навоз наиболее богат термофилами, их рассмат­ривают как показатель загрязненности почвы.
Хорошо выдерживают микроорганизмы действие низких тем­ператур. Поэтому их можно долго хранить в замороженном со­стоянии, в том числе при температуре жидкого газа (—173 °С).
Высушивание. Обезвоживание вызывает нарушение функ­ций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гоно­реи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.
Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособнос­ти, консервирования микроорганизмов. Лиофилизированные культуры микроорганизмов и иммунобиологические препараты дли­тельно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.
Действие излучения. Неионизирующее излучение — уль­трафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных ве­ществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предме­тов в больницах, родильных домах, микробиологических лабо­раториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.
Ионизирующее излучение применяют для стерилизации од­норазовой пластиковой микробиологической посуды, питатель­ных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию иони­зирующих излучений, например Micrococcusradiodurans была вы­делена из ядерного реактора.
Действие химических веществ. Химические вещества могут ока­зывать различное действие на микроорганизмы: служить источ­никами питания; не оказывать какого-либо влияния; стимулировать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфи­цирующими. Антимикробные хи­мические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.
Химические вещества, используемые для дезинфекции, отно­сятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.
Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли).
Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке.
Дезинфекция — процедура, пре­дусматривающая обработку загрязненного микробами предмета с целью их уничтоже­ния до такой степени, чтобы они не смогли вызвать инфекцию при использовании дан­ного предмета. Как правило, при дезинфек­ции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.
Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.
Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

Стерилизация предполагает полную инактивацию микробов в объектах, подвергающихся обработке.
Существует три основных метода стерили­зации: тепловой, лучевой, химической.
Тепловая стерилизацияоснована на чувстви­тельности микробов к высокой температуре. При 60оС и наличии воды происходит денату­рация белка, деградация нуклеиновых кислот, липидов, вследствие чего вегетативные фор­мы микробов погибают. Споры, содержащие очень большое количество воды в связанном состоянии и обладающие плотными оболоч­ками, инактивируются при 160—170 °С.
Для тепловой стерилизации применяют, в основном, сухой жар и пар под давлением.
Стерилизацию сухим жаром осуществля­ют в воздушных стерилизаторах (прежнее название — «сухожаровые шкафы» или «печи Пастера»). Воздушный стерилизатор пред­ставляет собой металлический плотно закры­вающийся шкаф, нагревающийся с помощью электричества и снабженный термометром. Обеззараживание материала в нем произво­дят, как правило, при 160°С в течение 120 мин. Однако возможны и другие режимы: 200 °С - 30 мин, 180 °С - 40 мин.
Стерилизуют сухим жаром лабораторную посуду и другие изделия из стекла, инстру­менты, силиконовую резину, т. е. объекты, которые не теряют своих качеств при высокой температуре.
Большая часть стерилизуемых предметов не выдерживает подобной обработки, и поэтому их обеззараживают в паровых стерилизаторах.
Обработка паром под давлением в паровых стерилизаторах (старое название — «автокла­вы») является наиболее универсальным мето­дом стерилизации.
Паровой стерилизатор (существует множес­тво его модификаций) — металлический цилиндр с прочными стенками, герметически закрывающийся, состоящий из водопаровой и стерилизующей камер. Аппарат снабжен манометром, термометром и другими конт­рольно-измерительными приборами. В авто­клаве создается повышенное давление, что приводит к увеличению температуры кипения.
Поскольку кроме высокой температуры на микробы оказывает воздействие и пар, споры погибают уже при 120 °С. Наиболее распростра­ненный режим работы парового стерилизатора: 2 атм. — 121 °С — 15—20 мин. Время стерилиза­ции уменьшается при повышении атмосфер­ного давления, а следовательно, и температуры кипения (136 °С — 5 мин). Микробы погибают за несколько секунд, но обработку материала производят в течение большего времени, так как, во-первых, высокая температура должна быть и внутри стерилизуемого материала и, во-вторых, существует так называемое поле безопасности (рассчитанное на небольшую не­исправность автоклава).
Стерилизуют в автоклаве большую часть предметов: перевязочный материал, белье, коррозионно-устойчивые металлические инструменты, питательные среды, растворы, инфекционный материал и т. д.
Одной из разновидностей тепловой стери­лизации является дробная стерилизация, ко­торую применяют для обработки материалов, не выдерживающих температуру выше 100 °С, например, для стерилизации питательных сред с углеводами, желатина. Их нагревают в во­дяной бане при 80 °С в течение 30—60 мин.
В настоящее время применяют еще один метод тепловой стерилизации, предназначен­ный специально для молока — ультравысоко­температурный (УВТ): молоко обрабатывают в течение нескольких секунд при 130—150 °С.
Химическая стерилизацияпредполагает ис­пользование токсичных газов: оксида этиле­на, смеси ОБ (смеси оксида этилена и бро­мистого метила в весовом соотношении 1:2,5) и формальдегида. Эти вещества являются алкилирующими агентами, их способность в присутствии воды инактивировать активные группы в ферментах, других белках, ДНК и РНК приводит к гибели микроорганизмов.
Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80 °С в специальных камерах. В больницах используют формальдегид, в промышленных условиях — оксид этилена и смесь ОБ.
Перед химической стерилизацией все из­делия, подлежащие обработке, должны быть высушены.
Этот вид стерилизации небезопасен для персонала, для окружающей среды и для па­циентов, пользующихся простерилизованными предметами (большинство стерилизующих агентов остается на предметах).
Однако существуют объекты, которые мо­гут быть повреждены нагреванием, например, оптические приборы, радио- и электронная аппаратура, предметы из нетермостойких по­лимеров, питательные среды с белком и т. п., для которых пригодна только химическая сте­рилизация. Например, космические корабли и спутники, укомплектованные точной ап­паратурой, для их деконтаминации обезв­реживают газовой смесью (оксид этилена и бромистого метила).
В последнее время в связи с широким рас­пространением в медицинской практике изде­лий из термолабильных материалов, снабжен­ных оптическими устройствами, например эндоскопов, стали применять обезврежива­ние с помощью химических растворов. После очистки и дезинфекции прибор помещают на определенное время (от 45 до 60 мин) в сте­рилизующий раствор, затем прибор должен быть отмыт стерильной водой. Для стери­лизации и отмывки используют стерильные емкости с крышками. Простерилизованное и отмытое от стерилизующего раствора изделие высушивают стерильными салфетками и по­мещают в стерильную емкость. Все манипу­ляции проводят в асептических условиях и в стерильных перчатках. Хранят эти изделия не более 3 суток.
Лучевая стерилизацияосуществляется либо с помощью гамма-излучения, либо с помо­щью ускоренных электронов.
Лучевая стерилизация является альтернати­вой газовой стерилизации в промышленных условиях, и применяют ее также в тех случаях, когда стерилизуемые предметы не выдержи­вают высокой температуры. Лучевая стерили­зация позволяет обрабатывать сразу большое количество предметов (например, одноразо­вых шприцев, систем для переливания крови). Благодаря возможности широкомасштабной стерилизации, применение этого метода впол­не оправданно, несмотря на его экологичес­кую опасность и неэкономичность.
Еще одним способом стерилизации является фильтрование. Фильтрование с помощью раз­личных фильтров (керамических, асбестовых, стеклянных), а в особенности мембранных уль­трафильтров из коллоидных растворов нитроцеллюлозы или других веществ позволяет освободить жидкости (сыворотку крови, лекарства) от бак­терий, грибов, простейших и даже вирусов. Для ускорения процесса фильтрации обычно создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.
В настоящее время все более широкое при­менение находят современные методы стери­лизации, созданные на основе новых техно­логий, с использованием плазмы, озона.

Рост микроорганизмов в зависимости от температуры, активности воды, кислотности среды. Устойчивость микроорганизмов к высушиванию. Отношение микроорганизмов к молекулярному кислороду: аэробы и анаэробы.

Треугольник зависимости скорости роста от температуры неравнобедренный (рис. 26): скорость снижается медленно при понижении температуры, а при повышении вскоре после достижения наивысшей скорости роста резко срывается, и наступает гибель клеток при температуре, обозначаемой как максимальная. Диапазон между максимальной и минимальной температурами обычно составляет 20-30 °С. Оптимум зависимости от температуры располагается ближе к максимуму.

Однако различают стенотермные и эвритермные организмы; первые имеют узкий температурный диапазон, а вторые — широкий, причем способны приспосабливаться к изменению температуры. Возрастание скорости роста от температуры обозначается как Ql0 — возрастание скорости реакции при увеличении температуры на 10 °С. Обычно эта величина близка значению 2. Определяющими для скорости роста могут служить разные реакции, среди которых можно выделить лимитирующие. Для ферментов и ферментных систем максимальные скорости наблюдаются обычно несколько выше оптимума роста. Ограничивающими служат сложные процессы: при максимальной температуре происходит денатурация белков, минимум приписывается сгущению мембранных липидов и зависит от содержания в них ненасыщенных кислот. Очевидно, что действию температуры подвергаются все системы клетки и решающей оказывается наиболее чувствительная.

Рис. 26. Зависимость роста микроорганизмов от температуры. Кардинальные точки

1 — минимум; 2 — максимум; 3 — оптимум; ц — скорость роста

Активность воды (aw) — это отношение давления паров воды над данным

 

продуктом к давлению паров над чистой водой при той же температуре:

 

где Pw — давление водяного пара в системе пищевого продукта; Ро — давление пара чистой воды; РОВ — относительная влажность в состоянии равновесия, при которой продукт не впитывает влагу и не теряет ее в атмосферу, %.

Активность воды может быть измерена и использована для оценки состояния воды в пищевых продуктах и ее причастности к химическим и биохимическим изменениям По величине активности воды выделяют: продукты с высокой влажностью (aw= 1,0—0,9); продукты с промежуточной влажностью (aw = 0,9—0,6); продукты с низкой влажностью (aw = 0,6—0,0).

Стабильность пищевых продук­тов и активность воды тесно связаны.

В продуктах с низкой влажностью могут происходить окисление жиров, неферментативное потемнение, потеря водорастворимых веществ (витаминов), порча, вызванная ферментами. Активность микроорганизмов здесь подавлена. При хранении пищевых продуктов активность воды оказывает влия­ние на жизнеспособность микроорганизмов. Поэтому актив­ность воды в продукте имеет значение для предотвращения его микро­биологической порчи.

 

Для большинства химических реакций большая или максимальная скорость имеет место, как правило, в области aw, характерной для продуктов с промежуточной влажностью (0,7-0,9).

Ферментативные реакции могут протекать при более высоком содержании влаги, чем влага монослоя, т.е. тогда, когда есть свободная вода. Она необходима для переноса субстрата.

Продукты с содержанием aw=1,0 – 0,9 –это продукты с высокой влажностью, они доступны жизнедеятельности всех групп микроорганизмов, не стойки при хранении, к ним относится большинтво пищевых продуктов.

Для большинства бактерий предельное значения aw=0,9, но, например, для St. aureus aw= 0,86. Дрожжи и плесени могут расти при более низких значениях активности воды.

Продукты с промежуточной влажностью (aw = 0,9—0,6). В основном порчу продуктов с промежуточной влажностью вызывают дрожжи и плесени, меньше — бактерии. Дрожжи вызывают порчу сиропов, кондитерских изделий, джемов, паст, сгущенных продуктов; плесени — мяса, джемов, пирожных, печенья, сушеных фруктов.

Продукты с низкой влажностью (aw = 0,6—0,0) – как правило, сухие, не доступны для микроорганизмов, но в них могут проходить реакции не ферментативного потемнения. Снижает аw такие технологические операции как сушка, замораживание, вяление, добавление таких веществ, как соль, сахар и специальные увлажнители (крахмал, глицерин, молочная кислота), которые увеличивают влажность, не изменяя aw.

Помимо влияния на химические реакции и рост микроорганизмов, активность воды имеет значение и для текстуры продуктов. Например, максимальная активность воды, допустимая в сухих продуктах без потери желаемых свойств, может изменяться в пределах 0,35—0,5 в зависимости от вида продукта (сухое молоко, крекеры, и т.п.).

Жизнедеятельность микроорганизмов зависит от концентрации водородных (Н+) или гидроксильных (ОН-) ионов в субстрате, на котором они развиваются. Для большинства бактерий наиболее благоприятна нейтральная (рН около 7) или слабощелочная среда. Плесневые грибы и дрожжи хорошо растут при слабокислой реакции среды. Высокая кислотность среды (рН ниже 4,0) препятствует развитию бактерий, однако плесени могут продолжать расти и в более кислой среде. Подавление роста гнилостных микроорганизмов при подкислении среды имеет практическое применение. Добавление уксусной кислоты используется при мариновании продуктов, что препятствует процессам гниения и позволяет сохранить продукты. Образующаяся при квашении молочная кислота также подавляет рост гнилостных бактерий.

Вся жизнедеятельность микробной клетки связана с наличием в среде влаги. Высушивание, приводящее к обезвоживанию клетки, действует губительно на микробы. Скорость отмирания под влиянием высушивания различная у различных видов микробов: так, у холерного вибриона - до двух суток, у дифтерийной палочки - до тридцати дней брюшнотифозной палочки - до семидесяти дней, у туберкулезной палочки и стафилококка - до девяноста дней. К весьма чувствительным к высушиванию относятся нитрифицирующие, клубеньковые бактерии, азотобактер. Оптимальной для них является влажность почвы 40-80% полной влагоемкости. Более устойчивы к высушиванию сапрофиты. Хорошо переносят высушивание молочнокислые бактерии, дрожжи (годами). Очень устойчивы к высушиванию споры бактерий, ибо вода в них находится в связанном состоянии. Они могут сохраняться высушенными до сотни лет. Споры разных грибов также очень устойчивы. В высушенном состоянии микробы не проявляют жизнедеятельности заметным образом, но биологические их свойства сохраняются.

Такое действие высушивания на микробы широко использовано для консервирования различных продуктов. Сушке подвергают рыбу, мясо, фрукты, овощи, грибы, траву на сено, лекарственные травы. При малом содержании воды в субстрате микробная клетка не может поглощать из него воду и не развивается. При влажности пищевого продукта ниже 30% от полной влагоемкости развитие бактерий приостанавливается, а ниже 15% приостанавливается развитие грибов. Но в этих условиях жизнь многих микробов все же сохраняется долгое время, и при достаточном увлажнении активность их восстанавливается, что может привести к порче продукта.

Устойчивость к высушиванию в настоящее время искусственно повышают. Для этого высушивание производят при низкой температуре путем замораживания в безвоздушном пространстве. Высушенные таким образом микробы остаются жизнеспособными в течение ряда месяцев, лет без изменения их биологических свойств. Так сохраняются культуры микробов, живые ослабленные вакцины, фаги.

Кислород широко распространен в природе, находясь как в связанном, так и свободном состоянии. В первом случае он входит в состав молекул воды, органических и неорганических соединений. Во втором - присутствует в современной атмосфере в виде молекулярного кислорода (О2), объемная доля которого составляет 21%.

Кислород является обязательным химическим компонентом любой клетки. Подавляющее большинство организмов удовлетворяет свои потребности в этом элементе, используя обе формы кислорода. При выращивании Pseudomonas в присутствии 18О2 и Н218О источником приблизительно 10% кислорода, входящего в состав клеточного материала, служил газообразный кислород, 50-60% клеточного кислорода происходило из воды. Остальной кислород в клетку поставляли органические и неорганические компоненты питательной среды (глюкоза, фосфаты, нитраты, сульфаты и др.).

Среди прокариот существуют значительные различия в отношении к молекулярному кислороду. По этому признаку они могут быть разделены на несколько групп (рис. 34). Прокариоты, для роста которых О2 необходим, называют облигатными (обязательными) аэробами. К ним относится большинство прокариотных организмов. Среди облигатных аэробов обнаружены существенные различия в отношении к уровню молекулярного кислорода в среде. Некоторые представители этой группы не способны к росту при концентрации О2, равной атмосферной, но могут расти, если содержание О2 в окружающей среде будет значительно ниже (порядка 2%). Такие облигатно аэробные прокариоты получили название микроаэрофилов.

Потребность прокариот в низкой концентрации О2 в окружающей среде связана с их метаболическими особенностями. Многие аэробные азотфиксирующие бактерии могут расти в среде с молекулярным азотом только при концентрации О2 ниже 2%, т.е. как микроаэрофилы, а в присутствии связанного азота, например аммонийного, - на воздухе. Это объясняется ингибирующим действием молекулярного кислорода на активность нитрогеназы - ферментного комплекса, ответственного за фиксацию N2.

Аналогичная картина обнаружена у многих водородокисляющих бактерий. На среде с органическими соединениями в качестве источника энергии они хорошо растут при атмосферном содержании О2. Если источником энергии является окисление молекулярного водорода, эти же бактерии для роста требуют низкой концентрации О2. Последнее связывают с инактивацией молекулярным кислородом гидрогеназы - фермента, катализирующего использование Н2.

Наконец, среди облигатных аэробов существуют значительные различия в устойчивости к высоким уровням О2 в среде. 100%-й молекулярный кислород подавляет рост всех облигатных аэробов. Многие аэробные бактерии могут формировать колонии на поверхности твердой питательной среды в атмосфере, содержащей 40% О2, но рост их прекращается, когда содержание О2 в атмосфере повышается до 50%.

Известны прокариоты, для метаболизма которых О2 не нужен, т. е. энергетические и конструктивные процессы у них происходят без участия молекулярного кислорода. Такие организмы получили название облигатных анаэробов. К ним относятся метанобразующиеархебактерии, сульфатвосстанавливающие, маслянокислые и некоторые другие эубактерии. До сравнительно недавнего времени считали, что облигатные анаэробы могут получать энергию только в процессе брожения. В настоящее время известно много облигатно анаэробных прокариот, которые произошли от аэробов в результате вторичного приспособления к анаэробным условиям, приведшего к потере способности использовать О2 в качестве конечного акцептора электронов в процессе дыхания. Такие облигатные анаэробы получают энергию в процессах анаэробного дыхания, т.е. переноса электронов по цепи переносчиков на СО2, SO4--, фумарат и другие акцепторы.

В ряду облигатно анаэробных прокариот, не включающих O2 в метаболические реакции, существует широкий спектр степени устойчивости к молекулярному кислороду, находящемуся во внешней среде. Многие из облигатных анаэробов не выносят присутствия даже незначительных количеств молекулярного кислорода в среде и быстро погибают. Такие организмы называютстрогими анаэробами. К числу строгих анаэробов относятся представители родов Bacteroides, Fusobacterium, Butyrivibrio,Methanobacterium и др.

Маслянокислые бактерии относятся также к группе облигатных анаэробов, но среди них есть виды, умеренно (Clostridium tetani,Сlostridium carnis, Сlostridium tertium, Сlostridium sporogenes) или достаточно высоко (Сlostridium perfringens, Сlostridium acetobutylicum) толерантные к О2.

Наконец, молочнокислые бактерии, обладающие метаболизмом только анаэробного типа, могут расти в присутствии воздуха и выделены в отдельную группу аэротолерантных анаэробов. (Некоторые авторы относят молочнокислые бактерии рода Lactobacillus к микроаэрофилам на том основании, что в их клетках содержатся флавопротеины, катализирующие перенос электронов с НАД*Н2 на О2. Однако этот процесс не связан с получением клеткой энергии).

Хотя облигатно анаэробные бактерии в целом очень чувствительны к О2, они могут в природе находиться в аэробных зонах. Широкое распространение представителей рода Clostridium в местах с высоким парциальным давлением О2 объясняется наличием у них эндоспор, не чувствительных к молекулярному кислороду. Однако и многие не образующие спор строго анаэробные прокариотыобнаружены в природе в местах, где наблюдается активное развитие облигатных аэробов. Вероятно, совместное развитие с облигатными аэробами, активно потребляющими молекулярный кислород, приводящее к образованию зон с низкой концентрацией 02, создает возможности и для развития строго анаэробных видов.

Описаны прокариотные организмы, которые могут расти как в аэробных, так и в анаэробных условиях. Изучение этого явления показало, что природа его различна. Бактерии, не нуждающиеся в О2 (последний не участвует в осуществляемых ими метаболических реакциях), но способные расти в его присутствии, являются по типу осуществляемого ими метаболизмаоблигатными анаэробами, устойчивыми к О2 внешней среды. Примером таких организмов служат молочнокислые бактерии. Многие прокариоты, относящиеся к этой же группе, приспособились в зависимости от наличия или отсутствия О2 в среде переключаться с одного метаболического пути на другой, например с дыхания на брожение, и наоборот. Такие организмы получили название факультативных анаэробов, или факультативных аэробов. Представителями этой физиологической группы прокариот являются энтеробактерии. В аэробных условиях они получают энергию в процессе дыхания. (Среди факультативных анаэробов в условиях осуществления ими метаболизма аэробного типа также могут быть микроаэрофилы). В анаэробных условиях источником энергии для них служат процессы брожения или анаэробного дыхания.

Потребность в О2 у аэробов определяется его участием в энергетических и конструктивных процессах. В первом случае О2 служит обязательным конечным акцептором электронов, во втором - участвует в реакциях (или единственной реакции) на пути многоступенчатого преобразования клеточных метаболитов или экзогенных субстратов. У облигатных аэробов большая часть О2 используется в качестве конечного акцептора электронов в реакциях, катализируемых цитохромоксидазами. Меньшая часть включается в молекулы с помощью ферментов, получивших общее название оксигеназ. В клетках факультативных анаэробов также содержатся цитохромоксидазы. У облигатных анаэробов нет ферментов, катализирующих взаимодействие с О2.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 511; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.94.171 (0.033 с.)