Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Четвертый уровень химического знания. Эволюционная химияСодержание книги
Поиск на нашем сайте
В 60–70-е гг. XX в. появился четвертый способ решения основной проблемы химии, открывающий пути для использования в производстве материалов самых высокоорганизованных химических систем, какие только возможны в настоящее время. В основе этого способа лежит принцип использования в процессах получения целевых продуктов таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т.е. к самоорганизации химических систем. В сущности, речь идет об использовании химического опыта живой природы. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так появилась эволюционная химия как высший уровень развития химического знания. Под эволюционными процессами в химии понимают процессы самопроизвольного (без участия человека) синтеза новых химических соединений, являющихся более сложными и высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиологией, наукой о самоорганизации и саморазвитии химических систем. До последней трети XX в. об эволюционной химии ничего не было известно. В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, вопрос о происхождении вещества для химиков не представлял интереса, поскольку получение любого нового химического индивида всегда было делом рук и разума человека. Молекулы новых химических соединний конструировались по законам структурной химии из атомов и атомных групп, как здание из кирпичей. Живые же организмы из блоков собрать было нельзя. Но изучение и освоение опыта живой природы было давней мечтой ученых. Первые шаги на этом пути были сделаны еще И. Берцелиусом, который установил, что в основе функционирования живого организма лежит биокатализ. Затем исследования в этом направлении велись Ю. Либихом, П. Бертло и, наконец, Н.Н. Семеновым. Работы этих ученых способствовали укреплению связи химии с биологией. Постепенное развитие науки в XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. На повестке дня стояло изучение характера химических процессов в живых тканях, обусловленность биологических функций химическими реакциями. Как было установлено учеными в XIX в., основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. Они стремятся к новым принципам управления химическими процессами, в которых будет применяться синтез себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности до сих пор. Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем. Также возможно частичное практическое применение выделенных ферментов для ускорения некоторых химических реакций. Для этого нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма. На этой основе и возникла эволюционная химия как новая наука, пролагающая пути принципиально новой химической технологии, способной стать аналогом живых систем. Таким образом, возникновению эволюционной химии способствовали исследования в области моделирования биокатализаторов-ферментов. Для освоения опыта живой природы и реализации полученных знаний в промышленности химики наметили ряд перспективных путей. Во-первых, химики ведут исследования в области металлоком-плексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов. Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри живой клетки, вне клетки быстро разрушаются. В-третьих, развивается химия иммобилизованных систем. При этом ферменты, выделенные из живого организма, закрепляются на твердой поверхности путем адсорбции. Пионером в этой области выступил русских химик И.В. Березин. Благодаря его исследованиям биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократного использования. В-четвертых, глобальной целью современной химии является решение самой широкой задачи – освоение и использование всего опыта живой природы. Это позволит химикам создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, человечество получит в свое распоряжение принципиально новые химические технологии. Зарождение эволюционной химии произошло в 1960-е гг., когда были открыты случаи самосовершенствования катализаторов в ходе реакции, тогда как обычно в процессе работы они дезактивировались, ухудшались и выбрасывались. Так химики обратили внимание на процессы самоорганизации в химических системах, подняв тем самым химию на качественно новый уровень. При этом впервые было обращено внимание на существование в природе химических систем разной степени сложности, а также на процесс перехода от химических систем к биологическим. Изучение процессов самоорганизации в химии привело к формированию двух подходов к анализу предбиологических систем: субстратного и функционального. В рамках субстратного подхода было отмечено, что при переходе к простейшим формам жизни шел особый дифференцированный отбор лишь таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. Эти элементы в химии получили название органогенов. Результатами такого подхода стала информация об отборе химических элементов и структур, который оказался подобным биологической эволюции. В настоящее время наукой открыто 110 химических элементов. Большинство из них попадает в живые организмы и участвует в их жизнедеятельности. Однако основу жизнедеятельности обеспечивают только шесть химических элементов-органогенов – углерод, водород, кислород, азот, фосфор и сера. Их суммарная весовая доля в структуре живого организма составляет 97,4%. За ними следуют 12 элементов, которые принимают участие в построении многих физиологически важных компонентов биологических систем (натрий, калий, кальций, магний, алюминий, железо, кремний, хлор, медь, цинк, кобальт, никель). Их весовая доля в организме составляет 1,6%. Кроме того, существует еще 20 элементов, участвующих в построении и функционировании отдельных узкоспецифических биосистем, весовая доля которых составляет около 1%. Все остальные элементы в построении биосистем практически не участвуют. Общая химическая картина мира также весьма убедительно свидетельствует об отборе химических соединений. В настоящее время химической науке известно около 8 млн. химических соединений. Из них подавляющее большинство (96%) составляют органические соединения, которые образованы на основе все тех же 6–18 элементов. А из остальных 90 химических элементов природа создала всего лишь около 300 тысяч неорганических соединений. Из миллионов органических соединений в построении живого участвуют лишь несколько сотен. Из 100 известных аминокислот в состав белков входит только 20. Лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах. Химикам важно понять, каким образом из минимума химических элементов и химических соединений образовались сложнейшие биосистемы. Без этого ученые не смогут приспособить к своим нуждам простые химические системы и получить из них более сложные соединения. Можно предположить, что определяющими факторами в отборе химических элементов при формировании органических систем, а тем более биосистем, выступают условия соответствия этих элементов определенным требованиям: • способность образовывать прочные и, следовательно, энергоемкие связи; • эти связи должны быть лабильными (изменчивыми), способными к образованию новых разнообразных связей. Данным условиям отвечает углерод – органоген номер один. Он, как никакой другой элемент, способен вмещать и удерживать внутри себя самые редкие химические противоположности, реали-зовывать их единство, выступать в качестве носителя внутреннего противоречия. Азот, фосфор и сера как органогены, а также железо и магний, составляющие активные центры ферментов, также лабильны. Кислород и водород свойством лабильности обладают в меньшей мере, поэтому являются носителями окислительных и восстановительных процессов. Сегодня также ясно, что в ходе эволюции отбирались те структуры, которые способствовали резкому повышению активности и селективности действия каталитических групп. Есть уже и некоторые выводы: • на ранних этапах химической эволюции органического мира катализ отсутствовал. Условия высоких температур (выше 5000 К), электрических разрядов и радиации, с одной стороны, препятствовали образованию конденсированного состояния вещества, а с другой – с лихвой перекрывали те порции энергии, которые необходимы для протекания большинства реакций; • первые проявления катализа начались при смягчении условий и образовании первичных твердых тел; • роль катализаторов возрастала по мере того, как физические условия приближались к земным. Но общее значение катализа вплоть до образования более или менее сложных органических молекул все еще не могло быть высоким; • после того, как был накоплен определенный количественный минимум органических и неорганических соединений, прежде всего Сахаров и аминокислот, роль катализа начала резко возрастать. В рамках функционального подхода также изучается роль катализа и выявляются законы, которым подчиняются процессы самоорганизации химических систем. Было отмечено, что ведущую роль на предбиологической стадии эволюции играл катализ. Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые напрямую стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Иными словами, такая эволюция если не целиком, то в значительной мере связана с процессами самоорганизации каталитических систем. Исходя из этого профессор МГУ А.П. Руденко выдвинул теорию саморазвития открытых каталитических систем. Очень скоро она была преобразована в общую теорию химической эволюции и биогенеза. В ней решены вопросы о движущих силах и механизмах эволюционного процесса, т.е. о законах химической эволюции, отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции. Сущность данной теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем, а следовательно, эволюционирующим веществом являются катализаторы, а не молекулы. Выше мы упоминали, что при катализе идет реакция химического взаимодействия катализатора и реагентов с образованием промежуточных комплексов со свойствами переходного состояния. Именно такой промежуточный каталитический комплекс Руденко назвал элементарной каталитической системой. Если в ходе реакции идет постоянный приток новых реактивов извне и отвод готовой продукции, а также выполняются некоторые дополнительные условия, то реакция может идти неограниченно долго, находясь на одном и том же стационарном уровне. Такие многократно возобновляемые комплексы являются элементарными открытыми каталитическими системами. Саморазвитие, самоорганизация и самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальное эволюционное преимущество получают каталитические системы, развивающиеся на базе экзотермических реакций. Таким образом, базисная реакция – не только источник энергии, но и орудие отбора наиболее прогрессивных эволюционных изменений катализаторов. Тем самым Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализаторов, которые связаны с ростом их абсолютной каталитической активности. При этом по параметру абсолютной каталитической активности складываются механизмы конкуренции и естественного отбора. Возникает явление автокатализа, при котором продукты реакции выступают как катализаторы, ускоряющие дальнейшее протекание реакции. При этом реакция становится саморазвивающейся, и элементарная открытая каталитическая система подходит к первому пределу в своем развитии, когда рост скорости базисной реакции начинает ограничиваться постоянной температурой системы. Тогда некоторые элементарные каталитические центры становятся способными осуществлять не один, а несколько циклов базисной реакции. На следующем этапе развития элементарной каталитической системы скорость реакции начинает ограничиваться концентрацией реагирующих веществ. При этом система подходит ко второму пределу в своем развитии, который преодолевается с помощью пространственного дублирования каталитических систем, их разъединения и дальнейшего самостоятельного существования. А самовоспроизведение (точное пространственное дублирование) является признаком не химической, а биологической эволюции. Именно так с матричных молекул ДНК считывается наследственная информация и на этой основе строится новая молекула. Таким образом, второй кинетический предел саморазвития элементарных открытых каталитических систем является пределом добиологической химической эволюции. После этого возможности добиологической эволюции, проходящей по законам химии, исчерпываются, и начинается эволюция биологическая. Практическим следствием теории саморазвития открытых каталитических систем является так называемая нестационарная кинетика, которая занимается теорией управления нестационарными процессами – реакциями с меняющимися условиями. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленного процесса, является лишь частным случаем нестационарного режима. При этом было обнаружено множество нестационарных режимов, способствующих интенсификации реакции. Таким образом, рассмотренные концепции химии позволяют говорить о существовании химической картины мира, т.е. такого взгляда на природу с точки зрения химии, в котором определяются место и роль химических объектов и процессов в реальном природном многообразии. Ее содержанием является: • обобщенное знание эпохи о том, что представляют собой объекты живой и неживой природы с точки зрения их химического содержания. Сюда входит учение о многообразии частиц вещества и его химической организации; • представление о едином происхождении всех основных типов природных объектов, их естественной эволюции; • зависимость химических свойств природных объектов от их структуры; • общие закономерности природных процессов как процессов химического движения – взаимодействия реагирующих веществ друг с другом и окружающей средой; • знание о специфических объектах, синтезируемых в практической деятельности химиков.
|
||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 314; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.167.229 (0.008 с.) |