Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структура и эволюция Вселенной

Поиск

Окружающий нас мир при всем его многообразии и изменчивости – не хаотическое скопление предметов и событий, а единое системное образование. В природе отчетливо просматривается многоступенчатая иерархия структурных уровней организации материи от элементарных частиц до крупномасштабных галактик. Каждый структурный уровень характеризуется специфической организацией и размерами, каждая ступень иерархической лестницы закономерно связана с другими. Благодаря взаимным связям этот огромный и разнообразный мир предстает перед нами как гармония, полная загадок и тайн. Большая их часть связана с вопросами происхождения и устройства Вселенной, ответы на которые дают космология, космогония и астрономия.

Начиная с самых ранних этапов своей истории человек стремился понять, как устроен окружающий мир, что такое звезды, планеты, солнце, как они возникли. Многовековые попытки дать ответы на эти вопросы привели к возникновению космологии.

Космология – астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной.

Сам термин «космология» образован от двух греческих слов: kosmos – Вселенная и logos – закон, учение. По своей сути космология представляет собой раздел естествознания, использующий достижения и методы астрономии, физики, математики, философии. Естественно-научной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.

Многие положения современной космологии кажутся фантастическими. Понятия Вселенной, бесконечности, Большого взрыва не поддаются наглядному физическому восприятию; такие объекты и процессы нельзя зафиксировать непосредственно. Из-за этого обстоятельства складывается впечатление, что речь идет о чем-то сверхъестественном. Но такое впечатление обманчиво, поскольку функционирование космологии носит весьма конструктивный характер, хотя многие ее положения и оказываются гипотетичными.

Современная космология – это раздел астрономии, в котором объединены данные физики и математики, а также универсальные философские принципы, поэтому она представляет собой синтез научных и философских знаний. Такой синтез в космологии необходим, поскольку размышления о происхождении и устройстве Вселенной эмпирически трудно проверяемы и чаще всего существуют в виде теоретических гипотез или математических моделей. Космологические исследования обычно развиваются от теории к практике, от модели к эксперименту, и здесь исходные философские и общенаучные установки приобретают большое значение. По этой причине космологические модели существенно различаются между собой – в их основе зачастую лежат противоположные исходные философские принципы. В свою очередь, любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т.е. изменяют фундаментальные представления человека о мире и самом себе.

Важнейший постулат современной космологии заключается в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, могут быть экстраполированы на гораздо более широкие области, а в конечном счете и на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории – подтверждаться наблюдениями или во всяком случае не противоречить им.

В Новое время рождается космогония.

Космогония – наука о происхождении и развитии космических тел и их систем.

Таким образом, космогония изучает звезды и звездные системы, галактики, туманности, Солнечную систему и все входящие в нее тела – планеты, спутники, астероиды, кометы и метеориты. Первоначально космогонические гипотезы касались только Солнечной системы. Лишь в XX в. появилась возможность начать серьезное изучение происхождения и развития звезд и галактик.

Результаты познания, получаемые в космологии, оформляются в виде моделей происхождения и развития Вселенной. Это связано с тем, что в космологии невозможно поставить воспроизводимые эксперименты и вывести из них какие-то законы, как это делается в других естественных науках. Кроме того, каждое космическое явление уникально. Поэтому космология оперирует моделями.

Уже древние мудрецы задавались вопросом о происхождении и устройстве Вселенной. Их взгляды и идеи были неотъемлемым компонентом философских систем древности. Эти первые космологические идеи, сохранившиеся до наших дней в виде мифов, основывались на астрономических наблюдениях. Жрецам Вавилона, Египта, Индии и Китая удалось точно вычислить продолжительность года, повторяемость солнечных и лунных затмений. Наблюдая за небесными телами, они смогли выявить две группы небесных тел: подвижные и неподвижные. Множество звезд долгое время считались неподвижными объектами. К числу подвижных тел относились Луна, Солнце и пять известных в то время планет, названных именами богов (впервые это было сделано в Вавилоне, сегодня же мы используем в качестве названий планет имена римских богов) – Меркурий, Венера, Марс, Юпитер и Сатурн. В их честь неделя была разделена на семь дней, каждый из которых в существующей и сегодня астрологической традиции связан с одним из подвижных тел. Из наблюдения видимого движения Солнца по небесной сфере были открыты двенадцать так называемых зодиакальных созвездий.

После того как появилась философия, пришедшая вместе с наукой на смену мифологии, ответ на «вечные» вопросы стали искать в основном в рамках философских концепций. В античности появилось несколько интересных космологических моделей Вселенной, принадлежащих Пифагору, Демокриту, Платону. Тогда же возникли и первые гелиоцентрические модели Вселенной. Так, Гераклид Понтийский признавал суточное вращение Земли и ее движение вокруг покоящегося Солнца. Аристарх Самосский выдвигал идею о том, что Земля вращается по окружности, центром которой служит Солнце. Но гелиоцентрические идеи были отвергнуты большинством античных мыслителей, и общепризнанным итогом античной космологии стала геоцентрическая концепция, сформулированная Аристотелем и усовершенствованная Птолемеем. Данная модель просуществовала в течение всего Средневековья. Она была очень сложной, так как для компенсации видимого движения планет, совершающих петлеобразные движения, пришлось ввести систему деферентов и эпициклов.

С приходом Нового времени философия уступила свое первенство в создании космологических моделей науке, которая добилась особенно больших успехов в XX в., перейдя от различных догадок к достаточно обоснованным фактам, гипотезам и теориям. Первым результатом стало появление в XVI в. гелиоцентрической модели Вселенной, автором которой стал Николай Коперник. В этой модели Вселенная все еще представляла собой замкнутую сферу, в центре которой находилось Солнце, а вокруг него вращались планеты, в том числе и Земля.

Успехи космологии и космогонии в XVIII–XIX вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Данная модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Исчезни вдруг все тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее, погасшим, звездам приходят новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде классическая полицентрическая модель просуществовала в науке вплоть до начала XX в.

Однако в данной модели Вселенной было несколько недостатков. Закон всемирного тяготения объяснял центростремительное ускорение планет, но не говорил, откуда взялось стремление планет, а также любых материальных тел двигаться равномерно и прямолинейно. Для объяснения инерциального движения пришлось допустить существование в ней божественного «первотолчка», приведшего в движение все материальные тела. Кроме того, для коррекции орбит космических тел также допускалось вмешательство Бога. Таким образом, классическая полицентрическая модель Вселенной лишь частично носила научный характер, она не смогла дать научного объяснения происхождения Вселенной и поэтому была заменена другими моделями.

К концу XIX в. появились серьезные сомнения в классической космологической модели. Они приняли форму так называемых космологических парадоксов – фотометрического, гравитационного и термодинамического.

Фотометрический парадокс. Еще в XVIII в. швейцарский астроном Р. Шезо высказал сомнения в пространственной бесконечности Вселенной. Если предположить, утверждал Шезо, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит. Независимо от Шезо к аналогичным же выводам пришел известный немецкий астроном Ф. Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо–Ольберса. Таков был первый космологический парадокс, поставивший под сомнение пространственную бесконечность Вселенной.

Гравитационный парадокс. В конце XIX в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также неизбежно вытекавший из представлений о бесконечности Вселенной. Он получил название гравитационного парадокса. Нетрудно подсчитать, что в бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычисления. Поскольку этого не происходит, Зеелигер сделал вывод, что количество небесных тел во Вселенной ограничено, а значит, и сама Вселенная не бесконечна.

Термодинамический парадокс. Третий, термодинамический, парадокс также был сформулирован в XIX в. Он вытекает из второго начала термодинамики – принципа возрастания энтропии. Мир полон энергии, которая подчиняется важнейшему закону природы – закону сохранения энергии. Казалось бы, из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. В самом деле, если в природе при всех изменениях материи она не исчезает и не возникает из ничего, а лишь переходит из одной формы сущствования в другую, то Вселенная вечна, а материя, ее составляющая, пребывает в вечном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Никто, конечно, не знал, как это происходит, но убеждение в том, что Вселенная в целом всегда одна и та же, было в то время почти всеобщим.

Тем неожиданнее прозвучал вывод из второго начала термодинамики, открытого в середине XIX в. англичанином Кельвином и немецким физиком Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся и Вселенная превратится в мрачное замерзшее кладбище. Наступит тепловая смерть Вселенной.

Встать на позицию Клаузиуса – значит признать, что Вселенная имела когда-то начало и неизбежно будет иметь конец. Действительно, если бы в прошлом Вселенная существовала вечно, то в ней давно наступило бы состояние тепловой смерти, а так как этого нет, то, по убеждению Клаузиуса и многих других его современников, Вселенная была сотворена сравнительно недавно, а в будущем, если не случится какого-нибудь чуда, Вселенную ждет тепловая смерть.

Таким образом, концепция тепловой смерти Вселенной, термодинамический парадокс подставили под сомнение вопрос о вечности Вселенной во времени. Три космологических парадокса заставили ученых усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.

Новая модель Вселенной была создана в 1917 г. А. Эйнштейном. Ее основу составила релятивистская теория тяготения – общая теория относительности. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели, пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства, материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. На основании проведенных расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

При этом не следует представлять себе данную модель Вселенной в виде обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара, ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается конечным числом кубометров. Такое сферическое пространство не имеет границ, и в этом смысле оно безгранично. Летя в таком пространстве в одном направлении, мы в конце концов вернемся в исходную точку. Но в то же время муха, ползущая по поверхности шара, нигде не найдет границ и преград, запрещающих ей двигаться в любом избранном направлении. В этом смысле поверхность любого шара безгранична, хотя и конечна, т.е. безграничность и бесконечность – это разные понятия.

Итак, из расчетов Эйнштейна следовало, что наш мир является четырехмерной сферой. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе можно облететь всю замкнутую Вселенную, двигаясь все время в одном направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная Эйнштейна содержит хотя и большое, но все же конечное число звезд и звездных систем, а поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира. Его более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый.

Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. Это связано с тем, что именно тяготение определяет взаимодействие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения – общая теория относительности. Эйнштейн допускал в своей космологической модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизменность Вселенной. Однако последующее развитие естествознания внесло существенные коррективы в это представление.

Пять лет спустя, в 1922 г., советский физик и математик А. Фридман на основе строгих расчетов показал, что Вселенная Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э. Хаббл обнаружил эффект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. Согласно последним измерениям увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек.

В результате своих наблюдений Хаббл обосновал представление, что Вселенная – это мир галактик, что наша Галактика – не единственная в ней, что существует множество галактик, разделенных между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом, в естествознании появилась концепция расширяющейся Вселенной.

Какое же будущее ждет нашу Вселенную? Фридман предложил три модели развития Вселенной.

В первой модели Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, замыкаясь на себя, образуя сферу.

Во второй модели Вселенная расширялась бесконечно, а пространство искривлено как поверхность седла и при этом бесконечно.

В третьей модели Фридмана пространство плоское и тоже бесконечное.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют открытой Вселенной.

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Такой вариант модели назван осциллирующей, или закрытой, Вселенной.

В граничном случае, когда силы гравитации точно равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.

Наблюдаемое нами разбегание галактик есть следствие расширения пространства замкнутой конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения. Когда Э. Хаббл показал, что далекие галактики разбегаются друг от друга со все возрастающей скоростью, был сделан однозначный вывод о том, что наша Вселенная расширяется. Но расширяющаяся Вселенная – это изменяющаяся Вселенная, мир со всей своей историей, имеющий начало и конец. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Наиболее вероятным временем существования расширяющейся Вселенной считают 13,7 млрд. лет. Таков приблизительный возраст нашей Вселенной.

Представление о развитии Вселенной закономерно привело постановке проблемы начала эволюции (рождения) Вселенной и ее конца (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причин и процесса рождения самой Вселенной. Из всей совокупности современных космологических теорий только теория Большого взрыва Г. Гамова смогла к настоящему времени удовлетворительно объяснить почти все факты, связанные с этой проблемой. Основные черты модели Большого взрыва сохранились до сих пор, хотя и были позже дополнены теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейн-хардтом и дополненной советским физиком А.Д. Линде.

В 1948 г. выдающийся американский физик русского происхождения Г. Гамов выдвинул предположение, что физическая Вселенная образовалась в результате гигантского взрыва, происшедшего примерно 15 млрд. лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном крохотном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью – точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. В этом состоянии теряют смысл понятия пространства и времени, поэтому бессмысленно спрашивать, где находилась эта точка. Также современная наука ничего не может сказать о причинах появления такого состояния.

Тем не менее, согласно принципу неопределенности Гейзенбер-га вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно в 1061 г, сжать до плотности 1094 г/см3, то оно займет объем около 10-33 см3. Ни в какой электронный микроскоп разглядеть ее было бы невозможно. Долгое время ничего нельзя было сказать о причинах Большого взрыва и переходе Вселенной к расширению. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия возникла из квантового излучения, т.е. как бы из ничего. Дело в том, что в физическом вакууме отсутствуют фиксируемые частицы, поля и волны, но это не безжизненная пустота. В вакууме имеются виртуальные частицы, которые рождаются, имеют мимолетное бытие и тут же исчезают. Поэтому вакуум «кипит» виртуальными частицами и насыщен сложными взаимодействиями между ними. Причем, энергия, заключенная в вакууме, располагается как бы на его разных этажах, т.е. имеется феномен разностей энергетических уровней вакуума.

Пока вакуум находится в равновесном состоянии, в нем существуют лишь виртуальные (призрачные) частицы, которые занимают в долг у вакуума энергию на короткий промежуток времени, чтобы родиться, и быстро возвращают позаимствованную энергию, чтобы исчезнуть. Когда же вакуум по какой-либо причине в некоторой исходной точке (сингулярности) возбудился и вышел из состояния равновесия, то виртуальные частицы стали захватывать энергию без отдачи и превращались в реальные частицы. В конце концов в определенной точке пространства образовалось огромное множество реальных частиц вместе со связанной ими энергией. Когда же возбужденный вакуум разрушился, то высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательные давления, равносильные гравитационному отталкиванию такой величины, что оно вызвало безудержное и стремительное расширение Вселенной – Большой взрыв. Это и было первотолчком, «началом» нашего мира.

С этого момента начинается стремительное расширение Вселенной, возникают время и пространство. В это время идет безудержное раздувание «пузырей пространства», зародышей одной или нескольких вселенных, которые могут отличаться друг от друга своими фундаментальными константами и законами. Один из них стал зародышем нашей Метагалактики.

По разным оценкам, период «раздувания», идущий по экспоненте, занимает невообразимо малый промежуток времени – до 10-33 с после «начала». Он называется инфляционным периодом. За это время размеры Вселенной увеличились в 1050 раз, от миллиардной доли размера протона до размеров спичечного коробка.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Этот всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Такое состояние вакуума очень неустойчиво и стремится к распаду. Когда распад завершается, отталкивание исчезает, заканчивается и инфляция. А энергия, связанная в виде множества реальных частиц, высвободилась в виде излучения, мгновенно нагревшего Вселенную до 1027 К. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва.

Сразу после Большого взрыва Вселенная представляла собой плазму из элементарных частиц всех видов и их античастиц в состоянии термодинамического равновесия при температуре 1027 К, которые свободно превращались друг в друга. В этом сгустке существовали только гравитационное и большое (Великое) взаимодействия. Потом Вселенная стала расширяться, одновременно ее плотность и температура уменьшались. Дальнейшая эволюция Вселенной происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой – усложнением ее структур. Этапы эволюции Вселенной различаются характеристиками взаимодействия элементарных частиц и называются эрами. Самые важные изменения заняли менее трех минут.

Адронная эра продолжалась 10-7 с. На этом этапе температура понижается до 1013 К. При этом появляются все четыре фундаментальных взаимодействия, прекращается свободное существование кварков, они сливаются в адроны, важнейшими среди которых являются протоны и нейтроны. Наиболее значимым событием стало глобальное нарушение симметрии, которое произошло в первые мгновения существования нашей Вселенной. Число частиц оказалось чуть больше, чем число античастиц. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц на одну частицу оказывалось больше, ей не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.

Лептонная эра продолжалась до 1 с после начала. Температура Вселенной понизилась до 1010 К. Главными ее элементами были лептоны, которые участвовали во взаимных превращениях протонов и нейтронов. В конце этой эры вещество стало прозрачным для нейтрино, они перестали взаимодействовать с веществом и с тех пор дожили до наших дней.

Эра излучения (фотонная эра) продолжалась 1 млн. лет. За это время температура Вселенной снизилась с 10 млрд. К до 3000 К. На протяжении данного этапа происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза – соединение протонов и нейтронов (их было примерно в 8 раз меньше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы, после чего Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением.

Затем почти 500 тысяч лет не происходило никаких качественных изменений – шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. В итоге образовалась однородная Вселенная, представлявшая собой смесь трех почти не взаимодействующих субстанций: барионного вещества (водород, гелий и их изотопы), лептонов (нейтрино и антинейтрино) и излучения (фотоны). К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» – что-то вроде тепловой смерти. Но этого не случилось; напротив, произошел скачок, создавший современную структурную Вселенную, который, по современным оценкам, занял от 1 до 3 миллиардов лет.

После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газопылевое облако и электромагнитный фон. Спустя I млрд. лет после начала образования Вселенной стали появляться галактики и звезды. К этому времени вещество уже успело охладиться, и в нем стали возникать стабильные флуктуации плотности, равномерно заполнявшие космос. В сформировавшейся материальной среде появлялись и получали развитие случайные уплотнения вещества. Силы тяготения внутри таких уплотнений проявляют себя заметнее, чем за их границами. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, а его плотность начинает постепенно возрастать. Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Появление подобных уплотнений и стало началом рождения крупномасштабных космических структур – галактик, а затем и отдельных звезд.

Итак, первым условием появления галактик во Вселенной стало появление случайных скоплений и сгущений вещества в однородной Вселенной. Впервые подобная мысль была высказана И. Ньютоном, который утверждал, что если бы вещество было равномерно рассеяно по бесконечному пространству, то оно никогда бы не собралось в единую массу. Оно собиралось бы частями в разных местах бесконечного пространства. Данная идея Ньютона стала одним из краеугольных камней современной космогонии.

Второе условие появления галактик – наличие малых возмущений, флуктуаций вещества, ведущих к отклонению от однородности и изотропности пространства. Именно флуктуации и стали теми «затравками», которые привели к появлению более крупных уплотнений вещества. Эти процессы можно представить по аналогии с процессами образования облаков в атмосфере Земли. Известно, что водяной пар конденсируется на крохотных частичках – ядрах конденсации.

В середине XX в. были проведены расчеты, описывающие поведение таких сгущений. В частности, было доказано, что в расширяющейся Вселенной участки среды с большей плотностью расширяются медленнее, чем Вселенная в целом. Эти области постепенно отстают в расширении от остальной Вселенной, и в какой-то момент времени они совсем перестают расширяться. Изолированные участки вещества, как правило, очень велики по массе: она составляет в среднем 1015–1016 масс Солнца. Данные массы под действием гравитации начинают сжиматься, причем, происходит это весьма своеобразно – анизотропно. Вначале исходные объекты имеют форму куба, а затем сжимаются в пластинку – «блин». Первоначально изолированные друг от друга плоские «блины» очень скоро вырастают в плотные слои. Эти слои пересекаются, и в процессе их взаимодействия образуется ячеисто-сетчатая структура, где стенками огромных пустот служат «блины». Отдельный «блин» представляет собой сверхскопление галактик и имеет уплощенную форму. Эти первичные сгустки, продолжая сжиматься, становятся сферически симметричными. Кроме того, внутри себя они одновременно фрагментируются на звезды.

Существуют предположения относительно того, почему чаще встречаются спиральные галактики (их около 80%), чем галактики других типов (эллиптические и неправильные). Возможно, спиральные галактики образуются в результате слияния протогалактик в скоплениях. Вначале образуется объект неправильной формы, затем за несколько сотен миллионов лет (немного по космическим меркам) неровности сглаживаются, и образуется массивная эллиптическая галактика. Постепенно в результате вращения такой галактики может образовываться дискообразная структура, которая со временем будет приобретать облик спиральной галактики. Подтверждением этой точки зрения является наличие галактик переходного типа, занимающих промежуточное положение между спиральными и эллиптическими галактиками.

Также есть предположение, почему в скоплениях галактик присутствует одна гигантская галактика, а остальные – мелкие. Считается, что вначале гигантская галактика лишь немного превосходила по своим размерам соседние галактики. Но по мере того, как галактика двигалась по спиральной траектории к центру скопления, она заглатывала более мелкие системы. Мелкие галактики, обреченные на «съедение», называют галактиками-миссионерами.

Были выдвинуты гипотезы, объясняющие вращение галактик. Сегодня считается, что на ранних стадиях эволюции протогалактики были гораздо больше, чем сейчас. Кроме того, космологическое расширение не успело их разогнать далеко друг от друга, поэтому между ними возникали значительные гравитационные силы. Эти силы принимали вид приливных взаимодействий, которые и вызывали вращение галактик.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояния между галактиками в группах и скоплениях в 10–20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн. световых лет. Наиболее удаленные из наблюдаемых ныне галактик находятся на расстоянии 10 млрд. световых лет. Свет этих звезд идет к нам миллионы лет, поэтому мы наблюдаем их такими, какими они были много световых лет назад. Пространство между галактиками заполнено газом, пылью и разного рода излучениями. Основное вещество, составляющее межзвездный газ, – водород, на втором месте – гелий. Следует отметить, что водород и гелий – наиболее распространенные вещества не только в межзвездном пространстве, но и вообще во Вселенной.

Наша Галактика – Млечный путь – им



Поделиться:


Последнее изменение этой страницы: 2016-12-27; просмотров: 327; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.245.158 (0.014 с.)