Разность множеств. Свойства. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Разность множеств. Свойства.



Разность множеств А и В (пишется А – В, рис.3) есть множество элементов, которые принадлежат множеству А, но не принадлежат множеству В. Это множество называется также дополнением множества В относительно множества А.

Симметричная разность множеств А и В (пишется А \ В) есть множество:

 

Разностью двух множеств А и В называют такое множество, в которое входят все элементы из А, не принадлежащие множеству В. При этом не предполагается, что множество В является частью множества А. Таким образом, при вычитании множества В из множества А из А удаляются пересечение А и В:

Например, если А – множество точек первого круга на рисунке 16, а В – множество точек второго круга, то и разностью является множество точек заштрихованной серповидной фигуры. При этом точки дуги MN удаляются из фигуры.

В случае, когда В – часть множества А, называют дополнением к В в множестве А и обозначают (разумеется, одно и то же множество В может иметь разные дополнения в разных содержащих его множествах А) (рис. 17). Например, дополнением множества четных чисел в множестве всех целых чисел является множество нечетных чисел. Дополнением множества всех квадратов в множестве прямоугольников является множество всех прямоугольников с неравными сторонами. А дополнением того же множества квадратов в множестве всех ромбов является множество ромбов с неравными смежными углами.

 

 

17. Понятие функции одной переменной. Область определения и область значения функции. Основные свойства функции одной переменной. Понятие сложной функции. Обратная функция.

 

Термин "функция" появился в одной из рукописей Готфрида Вильгельма Лейбница в 1673 году. Однако, он употреблял этот термин в очень узком смысле. Речь шла об отрезках касательных к кривым, об их проекциях на оси координат и о "другого рода линиях, выполняющих для данной фигуры некоторую функцию".

В 1718 году Иоганн Бернулли впервые дает определение функции, свободное от геометрических представлений: "функцией переменной называется количество, образованное каким угодно способом из этой величины постоянных". Под "каким угодно способом" во времена Бернулли понимали арифметические операции, операции извлечения корней, тригонометрические и обратные тригонометрические, показательные и логарифмические "операции", а также их различные комбинации. Такие функции теперь называют элементарными.

Привычное для нас обозначение функции — f(x) — принадлежит Эйлеру.

Задать функцию означает установить правило (закон), с помощью которого по данным значениям независимой переменной следует находить соответствующие им значения функции:

Табличный способ

Заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Графический способ.

Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению.

Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом.

Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

Аналитический способ.

Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде.

Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно.

Функция может быть определена разными формулами на разных участках области своего задания.

Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа — основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Словесный способ.

Состоит в том, что функциональная зависимость выражается словами.

Основными недостатками словесного способа задания функции являются невозможность вычисления значений функции при произвольном значении аргумента и отсутствие наглядности. Главное преимущество же заключается в возможности задания тех функций, которые не удается выразить аналитически.

Понятие сложной функции: Пусть функция z = f(x,y) определена в некоторой окрестности точки (x0, y0). Пусть ее аргументы x и y в свою очередь являются функциями x = x(t), y = y(t) и определены в некоторой окрестности точки t0, причем x(t0) = x0, y(t0) = y0.

Тогда в окрестности точки t0 определена сложная функция аргумента t

z = f(x(t), y(t)).

Аналогично определяется сложные функции любого числа переменных.

Например, если x и y — функции 2–х переменных: x = x(u,v) и y = y(u,v), то функция z = f(x,y) является сложной функцией двух переменных u и v:

z = f(x(u,v), y(u,v))

Обратная функция, функция, обращающая зависимость, выражаемую данной функцией. Так, если у = f (x) — данная функция, то переменная х, рассматриваемая как функция переменной у, х = j (y), является обратной по отношению к данной функции у = f (x). Например, О. ф. для у = ax + b (а¹0) является х = (у—b)/a, О. ф. для у = ех является х = ln у и т.д. Если х = j(y) есть О. ф. по отношению к у = f (x), то и у = f (x) есть О. ф. по отношению к х = j(y). Областью определения О. ф. является область значений данной функции, а областью значений О. ф.— область определения данной. Графики двух взаимно обратных функций у = f (x) и у = j (x) (где независимое переменное обозначено одной и той же буквой х), как, например, у = ax + b и у = (х—b)/a, у = ех и у = ln х, симметричны по отношению к биссектрисе у = х первого и третьего координатных углов. Функция, обратная по отношению к однозначной функии, может быть многозначной (ср., например, функции х2 и). Для однозначности О. ф. необходимо и достаточно, чтобы данная функция у = f (x) принимала различные значения для различных значений аргумента. Для непрерывной функции последнее условие может выполняться только в том случае, если данная функция монотонна (имеются в виду функции действительного аргумента, принимающие действительные значения). О. ф. по отношению к непрерывной и монотонной функции однозначна, непрерывна и монотонна.

Если данная функция кусочно монотонна, то, разбивая область её определения на участки её монотонности, получают однозначные ветви О. ф. Так, одним из участков монотонности для sin х служит интервал — p/2< x < p/2; ему соответствует т. н. главная ветвь arc sin х обратной функции Arc sin х. Для пары однозначных взаимно обратных функций имеют место соотношения j[f (x)]=x и f [j(x)] = х, первое из которых справедливо для всех значений х из области определения функции f (x), а второе — для всех значений х из области определения функции j (x); например, elnx= х (х > 0), 1n (ex) = х (— ¥ < х < ¥). Иногда функцию, обратную к f (x) =у, обозначают f- -1(y) = х, так что для непрерывной и монотонной функции f (x):

F -1[f (x)]=f [f -1) x)]=x.

Вообще же f --1[f (x)] представляет собой многозначную функцию от х, одним из значений которой является х; так, для f (x) = x2, х (¹ 0) является лишь одним из двух значений f --1[f (x)] = √x2 (другое: —х); для f (x) = sin х, х является лишь одним из бесконечного множества значений

f- -1[f (x)] = Arc sin [sin x] = (—1) n x + np,

n = 0, ± 1, ± 2,....

 

Правила дифференцирования функции. Таблица производных элементарных функций.

Производная - главнейшее понятие математического анализа. Она характеризует изменение функции аргумента x в некоторой точке. При этом она и сама является функцией от аргумента x

Производная записывается так: f’(x) или у’.

Хотя есть способ решения производных, основанный на определении производной, чтобы не изобретать велосипедов, задачи на вычисление производной чаще решаются с помощью таблицы производных (её вы найдёте в середине этой главы).

Операция отыскания производной называется дифференцированием.

Упомянутый первый способ (по определению производной) применяется в основном для решения простых задач на физический и геометрический смысл производных и раздел об этом находится в конце данной статьи. А сначала мы будем учиться приводить функции к такому виду, чтобы их производные было возможно найти по таблице производных, чтобы сразу отточить технику дифференцирования, ибо подавляющее большинство задач основано на нахождении табличных производных. Научимся также избегать типичной ошибки при решении производной, причём сделаем это по аналогии с доступным и увлекательным примером из кулинарии.

Общий же алгоритм отыскания проиводной, который мы вам предлагаем, очень компактен:

1.Выражение, производную которой требуется найти, нужно разобрать на составные части, подобно тому, как предложение в языке может быть разобрано на подлежащее, сказуемое и другие члены предложения.

2.Поставить полученные составные части в соответствие формулам из таблицы производных (сумма, произведение, частное, степенная функция, сложная функция и др.).

3.Пользуясь таблицей производных, найти производные составных частей выражения и подставить их в выражение.

4.Записать результат.

Слово «выражение» здесь только для того используем, чтобы достичь аналогии с предложением речи, которое можно разобрать на составные части. Вообще же говорят «производная функции» (выражение это и есть функция).

 



Поделиться:


Последнее изменение этой страницы: 2016-12-15; просмотров: 707; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.70.203 (0.018 с.)