Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Математические методы в экономике

Поиск

15.1. Сетевое планирование.

Прогресс производства сложной продукции разбивается на отдельные этапы, зашифрованные номерами 1, 2,..., 10. 1 – начальный этап производства продукции, 10 – завершающий. Переход от -го этапа к -му этапу назовем операцией. Возможны выполнения операций и их продолжительности задаются таблицей.

 

N п/п шифр операции продолжительность операции 15.1.1. Составьте и упорядочите по слоям сетевой график производства работ. Номера этапов необходимо обвести кружками, а операции обозначить стрелками, проставляя над ними продолжительность операции.
  1→2
  1→3  
  1→4
  2→3  
  2→6  
  4→3  
  4→6  
  3→5   15.1.2. Считая, что начало работы происходит во время , определите время окончания каждого -го этапа и проставьте его над соответствующим кружком.
  3→7
  5→9
  6→7  
  6→8  
  7→8  
  7→9
  7→10  
  8→10  
  9→10

 

15.1.3. Найдите критическое время завершения процесса работ Ткр и выделите стрелки, лежащие на критическом пути.

15.1.4. Для каждой некритической операции определите резервы свободного времени и проставьте их над стрелками рядом с в скобках.

15.1.5. Решите задачу табличным методом. Номера этапов, лежащие на критическом пути подчеркните. (В табличном методе кроме резервов свободного времени необходимо также найти полные резервы времени для каждого этапа.)

15.1.6. Задача коммивояжёра. Требуется найти кратчайший из замкнутых маршрутов, проходящих точно по одному разу через каждый из шести городов .Задана матрица расстояний между любыми парами городов, причём расстояние от города до города может не совпадать с расстоянием от до . Элемент матрицы считается равным расстоянию от до .

 

  A1 A2 A3 A4 A5 A6
A1 c+2 2c c+3 2c c+1
A2 c c+5 c–1 c–1 3c
A3 c c+1 c+7 c+2 c+3
A4 c-1 c+2 c c+1 c–1
A5 c+5 c+2 c c 2c
A6 c c+1 c+2 c+5 c+7

где с = m+n

 

15.2. Системы массового обслуживания (СМО).

В парикмахерский салон приходит в среднем клиента в час (т.е. интенсивность поступления заявок в систему равна /час), а среднее время обслуживания одного клиента равно 1/ часов. Содержание одного рабочего места обходится в тысяч рублей за 1 час, а доход от обслуживания одного клиента составляет тысяч рублей в час.

15.2.1. Найти относительную пропускную способность СМО (т.е. вероятность того, что поступившая заявка будет обслужена) и абсолютную пропускную способность СМО (число заявок, обслуживаемых за 1 час), если салон обслуживает два мастера.

15.2.2. Найти доход , полученный за 1 час работы двух мастеров.

15.2.3. Найти аналогичные характеристики СМО , и , когда салон обслуживают три мастера, и определить, выгодно ли принять на работу третьего мастера с точки зрения общего дохода, полученного за 1 час работы салона.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-15; просмотров: 309; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.8.139 (0.006 с.)