Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Задача оптимального производства продукции.

Поиск

Предприятие планирует выпуск двух видов продукции I и II, на производство которых расходуется три вида сырья А, В, и С. Потребность на каждую единицу -го вида продукции -го вида сырья, запас соответствующего вида сырья и прибыль от реализации единицы -го вида продукции заданы таблицей:

 

 

Виды сырья Виды продукции Запасы сырья
I II
А
В
С
прибыль  
план (ед.)  

 

14.1.1. Для производства двух видов продукции I и II с планом и единиц составить целевую функцию прибыли Z и соответствующую систему ограничений по запасам сырья, предполагая, что требуется изготовить в сумме не менее единиц обоих видов продукции.

14.1.2. В условиях задачи 14.1.1. составить оптимальный план производства продукции, обеспечивающий максимальную прибыль . Определить остатки каждого вида сырья. (Задачу решить симплекс – методом)

14.1.3. Построить по полученной системе ограничений многоугольник допустимых решений и найти оптимальный план производства геометрическим путем. Определить соответствующую прибыль .

Транспортная задача.

На трех складах , и хранится , и единиц одного и того же груза. Этот груз требуется доставить трем потребителям , и , заказы которых составляют , и единиц груза соответственно. Стоимость перевозок единицы груза с -го склада -му потребителю указаны в правых верхних углах соответствующих клеток транспортной таблицы:

 

 

потребности запасы
4 2    
5     3
1     6

 

14.2.1. Сравнивая суммарный запас и суммарную потребность в грузе, установить, является ли модель транспортной задачи, заданная этой таблицей, открытой или закрытой. Если модель является открытой, то ее необходимо закрыть, добавив фиктивный склад с запасом в случае или фиктивного потребителя с потребностью в случае и положив соответствующие им тарифы перевозок нулевыми.

14.2.2. Составить первоначальный план перевозок. (Рекомендуется воспользоваться методом наименьшей стоимости.)

14.2.3. Проверить, является ли первоначальный план оптимальным в смысле суммарной стоимости перевозок, и если это так, то составить оптимальный план

,

обеспечивающий минимальную стоимость перевозок . Найти эту стоимость. (Рекомендуется воспользоваться методом потенциалов.)

Матричные игры.

14.3.1. Игра задана матрицей

Найти вероятности применения стратегий 1-м и 2-м игроком для получения цены игры. (Задачу решить аналитическим методом.)

14.3.2. Игра задана матрицами

для - четного

и

для - нечетного.

Применяя графический метод, найти смешанные оптимальные стратегии обоих игроков и определить цену игры.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-15; просмотров: 635; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.79.188 (0.008 с.)