Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Кафедра «Прикладной математики и эконометрики»↑ Стр 1 из 9Следующая ⇒ Содержание книги
Поиск на нашем сайте
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное агентство по образованию Санкт-Петербургский государственный университет сервиса и экономики Кафедра «Прикладной математики и эконометрики»
МАТЕМАТИКА ПРАКТИКУМ по выполнению контрольных работ для студентов всех специальностей Санкт-Петербург Утверждено Методическим Советом СПбГУСЭ Математика. Практикум. – СПб.: Изд-во СПбГУСЭ, 2008. – 31 с.
Практикум содержит задачи для контрольных работ по всем курсам математических дисциплин, предусмотренным учебными планами специальностей, и краткий перечень вопросов для подготовки к экзаменам. Каждая контрольная работа состоит из задач одного или нескольких разделов данного сборника, выбранных в соответствии с рабочей программой. Перечень разделов сборника, необходимых для выполнения контрольных работ по каждой специальности, сообщается студентам этой специальности в начале семестра.
Составители: канд. физ.-мат. наук, проф. С.И.Никитин; канд. физ.-мат. наук, доц. Н.Ю.Кропачева; старший преподаватель О.Х.Бритаева; старший преподаватель М.Г.Хабурзания.
© Санкт-Петербургский государственный университет 2008 г. СОДЕРЖАНИЕ
ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ.. 4 ФОРМИРОВАНИЕ ИСХОДНЫХ ДАННЫХ К ЗАДАЧАМ... 4 ЛИНЕЙНАЯ АЛГЕБРА.. 5 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ.. 6 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ.. 6 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ.. 8 ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.. 9 6. ДВОЙНЫЕ, ТРОЙНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ... 9 ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ.. 10 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ.. 11 9. РЯДЫ... 12 ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО.. 13 ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ.. 14 ТЕОРИЯ ВЕРОЯТНОСТЕЙ.. 14 ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ.. 16 ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ.. 17 МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЭКОНОМИКЕ.. 20 ДИСКРЕТНАЯ МАТЕМАТИКА.. 23 КРАТКОЕ СОДЕРЖАНИЕ (ПРОГРАММА) КУРСА.. 25 СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ... 31
Требования к оформлению контрольных работ 1. Контрольные работы следует выполнять в ученических тетрадях в клетку. На обложке необходимо указать: название Университета; название и номер контрольной работы; название (номер) специальности; фамилию,имя, отчество и личный шифр студента. 2. На каждой странице надо оставить поля для оценки решения задач и методических указаний проверяющего работу. 3. Условия задач переписывать полностью необязательно, достаточно указать номер задачи по данному сборнику. В условия задач надо сначала подставить конкретные числовые значения параметров т и п, и только после этого приступать к их решению. 4. Задачи в контрольной работе нужно располагать в порядке возрастания номеров.
Формирование исходных данных к задачам Каждая контрольная работа состоит из задач одного или нескольких разделов сборника. Условия задач, входящих в контрольную работу, одинаковы для всех студентов, однако числовые данные задач зависят от личного шифра студента, выполняющего работу. Числовых данных параметров т и п определяются по двум последним цифрам своего шифра (А — предпоследняя цифра, В — последняя цифра). Значение параметра т выбирается из таблицы 1, а значение параметра п - из таблицы 2. Эти два числа т и п и нужно подставить в условия задач контрольной работы.
Таблица 1 (выбор параметра т)
Таблица 2 (выбор параметра п)
Например, если шифр студента 1604 — 037, то А = 3, В = 7, и из таблиц находим, что т =4, п =1. Полученные т = 4 и п = 1 подставляются в условия всех задач контрольной работы этого студента.
Линейная алгебра Действия с матрицами. Выполнить действия: а) ; б) . Вычисление определителей. Вычислить определитель двумя способами: а) по правилу «треугольников»; б) разложением по строке. Обратная матрица. Найти обратную матрицу к матрице и проверить выполнение равенства . Системы линейных уравнений. Решить систему уравнений тремя способами: а) по формулам Крамера; б) методом Гаусса; в) с помощью вычисления обратной матрицы, записав систему в матричном виде : Аналитическая геометрия Прямая на плоскости. Построить треугольник, вершины которого находятся в точках , , и найти: 1) координаты точки пересечения медиан; 2) длину и уравнение высоты, опущенной из вершины А; 3) площадь треугольника; 4) систему неравенств, задающих внутренность треугольника АВС. Дифференциальное исчисление Производные функций. 3.1.3.Найти производные функций: а) ; б) ; в) ; д) ; е) ; ж)
Приложения производной. 3.2.1.С помощью методов дифференциального исчисления построить графики функций: 3.2.2.Найти наибольшее и наименьшее значение функции на отрезке Интегральное исчисление
Неопределенный интеграл. 4.1.1.Найти интегралы:
д) ; е) .
Несобственные интегралы. 4.2.1.Вычислить интеграл или установить его расходимость: Двойные интегралы. 6.1.1.Изменить порядок интегрирования: . 6.1.2.Сделать чертеж и найти объем тела, ограниченного поверхностями и плоскостью, проходящей через точки и . 6.1.3.Сделать чертеж и найти площадь фигуры, ограниченной линиями: а) . Тройные интегралы. 6.2.1.Найти , если тело V ограниченно плоскостями и . 6.2.2.Найти объем тела, ограниченного поверхностями . Криволинейные интегралы. 6.3.1.Вычислить , где , , а контур С образован линиями , : а) непосредственно; б) по формуле Грина. 6.3.2.Вычислить , где контур С является одним витком винтовой линии: . Элементы теории поля Дифференциальные операции. 7.1.1.В точке составить уравнение касательной прямой и нормальной плоскости к кривой
.
7.1.2.Найти в точке градиент скалярного поля . 7.1.3.Найти в точке дивергенцию векторного поля . 7.1.4.Найти в точке ротор векторного поля . Дифференциальные уравнения Уравнения первого порядка. 8.1.1.Найти общее решение уравнения: а) ; б) ; в) . 8.1.2.Скорость роста банковского вклада пропорциональна с коэффициентом равным величине вклада. Найти закон изменения величины вклада со временем, если первоначальная сумма вклада составляла миллионов рублей. Системы линейных уравнений. 8.3.1.Решить систему линейных уравнений с начальными условиями . Ряды Числовые ряды. 9.1.1.Исследовать на сходимость ряды с положительными членами: а) ; б) ; в) ; г) . 9.1.2.Исследовать на условную сходимость и абсолютную сходимость знакочередующиеся ряды: а) ; б) . Степенные ряды. 9.2.1.Найти область сходимости степенного ряда: а) ; б) .
9.2.2.Разложить функцию в ряд Тейлора в окрестности точки х0: а) ; б) . 9.2.3.С помощью разложения в ряд вычислить приближенно с точностью 0,001 значения: а) ; б) . Ряды Фурье. 9.3.1.Разложить функцию в ряд Фурье в указанном интервале: а) в интервале ; б) в интервале . в) в интервале . Аналитические функции. 10.2.1. Показать, что функция аналитична. 10.2.2. Известна вещественная часть u(x,y)=m(x2-y2)+mx-ny аналитической функции f(z), (z=x+iy). Найти функцию f(z). Ряды Тейлора и Лорана. 10.4.1. Разложить функцию в окрестности точки в ряд Тейлора и найти радиус сходимости ряда. 10.4.2. Разложить функцию в окрестности точки в ряд Лорана. 10.4.3. Разложить функцию в ряд Лорана по степеням и найти область сходимости ряда. Вычеты и их приложения. 10.5.1. Определить тип особых точек функции и найти вычеты в конечных особых точках. 10.5.2. Вычислить с помощью вычетов , где контур C, заданный уравнением , обходится против часовой стрелки. Операционное исчисление Теория вероятностей Случайные события. 12.1.1. В коробке находятся m+2 синих, n+3 красных и 2n+1 зеленых карандашей. Одновременно вынимают m+3n+2 карандашей. Найти вероятность того, что среди них будет m+1 синих и n+1 красных. 12.1.2. В первой урне находятся m+2 шаров белого и n шаров черного цвета, во второй — m+n белого и m синего, в третьей — n+3 белого и m+1 красного цвета. Из первой и второй урны наудачу извлекают по одному шару и кладут в третью. После этого из третьей вынимают один шар. Найти вероятность того, что он окажется белым. 12.1.3. Вероятность попадания стрелка в мишень при одном выстреле равна . Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз. 12.1.4. Каждый избиратель независимо от остальных избирателей, отдаёт свой голос за кандидата А с вероятностью 0,1(m+n) и за кандидата В – с вероятностью 1-0,1(m+n). Оценить вероятность того, что в результате голосования на избирательном участке (5000 избирателей) один из кандидатов опередит другого: Случайные величины. 12.2.1. Случайная величина Х равна числу появлений «герба» в серии из n+3 бросаний монеты. Найти закон распределения и функцию распределения F(x) этой случайной величины; вычислить ее математическое ожидание M X и дисперсию D X; построить график F(x). 12.2.2. Закон распределения дискретной случайной величины X имеет вид:
Найти вероятности p4, p5, и дисперсию D X, если математическое ожидание M X =-0,5+0,5m+0,1n. 12.2.3. Плотность распределения непрерывной случайной величины X имеет вид: Найти: а) параметр а; б) функцию распределения ; в) вероятность попадания случайной величины X в интервал ; г) математическое ожидание M X и дисперсию D X. Построить график функций и . 12.2.4. Случайные величины имеют равномерное, пуассоновское и показательное распределения соответственно. Известно, что математические ожидания Mξi=m+n, а дисперсия Dξ1=n2/3. Найти вероятности: а) ; б) ; в) . Задание 13.1. 13.1.1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте графики ряда распределения. 13.1.2. Рассчитайте числовые характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую , среднее квадратическое отклонение , дисперсию, коэффициент вариации V. Сделайте выводы. Задание 13.2. 13.2.1. Определите границы, в которых с вероятностью 0,997 заключена сумма прибыли одного предприятия в генеральной совокупности. 13.2.2. Используя c2-критерий Пирсона, при уровне значимости проверить гипотезу о том, что случайная величина X – сумма прибыли – распределена по нормальному закону. Задание 13.3. 13.3.1. Определите коэффициенты выборочного уравнения регрессии . 13.3.2. Установите наличие и характер корреляционной связи между стоимостью произведённой продукции (X) и суммой прибыли на одно предприятие (Y). Постройте диаграмму рассеяния и линию регрессии. 13.3.3. Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами X и Y, используя шкалу Чеддока. При расчетах целесообразно использовать стандартные математические пакеты для персональных компьютеров.
Линейное программирование Транспортная задача. На трех складах , и хранится , и единиц одного и того же груза. Этот груз требуется доставить трем потребителям , и , заказы которых составляют , и единиц груза соответственно. Стоимость перевозок единицы груза с -го склада -му потребителю указаны в правых верхних углах соответствующих клеток транспортной таблицы:
14.2.1. Сравнивая суммарный запас и суммарную потребность в грузе, установить, является ли модель транспортной задачи, заданная этой таблицей, открытой или закрытой. Если модель является открытой, то ее необходимо закрыть, добавив фиктивный склад с запасом в случае или фиктивного потребителя с потребностью в случае и положив соответствующие им тарифы перевозок нулевыми. 14.2.2. Составить первоначальный план перевозок. (Рекомендуется воспользоваться методом наименьшей стоимости.) 14.2.3. Проверить, является ли первоначальный план оптимальным в смысле суммарной стоимости перевозок, и если это так, то составить оптимальный план , обеспечивающий минимальную стоимость перевозок . Найти эту стоимость. (Рекомендуется воспользоваться методом потенциалов.) Матричные игры. 14.3.1. Игра задана матрицей Найти вероятности применения стратегий 1-м и 2-м игроком для получения цены игры. (Задачу решить аналитическим методом.) 14.3.2. Игра задана матрицами для - четного и для - нечетного. Применяя графический метод, найти смешанные оптимальные стратегии обоих игроков и определить цену игры.
Дискретная математика Двоичная система счисления. 16.1.1. Записать число в двоичной системе счисления.
Например: 16.1.2. Определить четырехзначное двоичное число своего задания. Для этого необходимо взять последние 4 цифры полученного в задаче 16.1.1. двоичного числа. Если в нем меньше четырех цифр, то слева нужно дописать нули. Так: , Логика высказываний. Пусть принимает значения 0 либо 1 ( = 1, 2, 3, 4). Положим
По четырехзначному двоичному числу , полученному в задаче 16.1.2, составьте формулу логики высказываний для своего задания. Так, например, двоичному числу 0110 (где ) соответствует формула , а двоичному числу 1010 - формула . Для полученной формулы: 16.2.1. Найти таблицу истинности. 16.2.2. Определить, эквивалентны ли она и формула . 16.2.3. Найти совершенную дизъюнктивную нормальную форму и совершенную конъюнктивную нормальную форму: а) табличным методом, б) непосредственным преобразованием. 16.2.4 Составить минимальную релейно-контактную схему, приведя формулу к минимальной дизъюнктивной форме. Краткое содержание (программа) курса Линейная алгебра. Матрицы, действия над ними. Определители, их свойства и вычисление. Обратная матрица. Системы линейных уравнений, условие их совместности. Формулы Крамера, метод Гаусса и матричный способ решения систем. Линейный оператор. Собственные векторы и собственные значения линейных операторов. Аналитическая геометрия. Простейшие задачи аналитической геометрии (расстояние между точками, деление отрезка в заданном отношении). Прямая на плоскости, различные виды ее уравнений, угол между прямыми. Расстояние от точки до прямой. Геометрический смысл линейных уравнений и неравенств. Кривые второго порядка, их канонические уравнения. Векторы, линейные операции над ними. Координаты вектора, его длина, направляющие косинусы. Скалярное, векторное и смешанное произведения векторов, условия их перпендикулярности, коллинеарности, компланарности. Плоскость в пространстве, ее уравнения, угол между плоскостями, расстояние от точки до плоскости. Прямая в пространстве, ее общие и канонические уравнения. Угол между прямой и плоскостью. Интегральное исчисление. Неопределенный интеграл, его основные свойства. Таблица интегралов. Интегрирование подстановкой и по частям. Интегрирование дробно-рациональных, тригонометрических и иррациональных функций. Интегральная сумма. Определенный интеграл, его геометрический смысл. Свойства определенного интеграла. Формула Ньютона-Лейбница. Интегрирование по частям и замена переменной в определенном интеграле. Несобственные интегралы. Приложения определенного интеграла. Использование понятия определенного интеграла в экономике. Элементы теории поля. Поверхностные интегралы. Поток векторное поля через ориентированную поверхность, его физический смысл. Дивергенция векторного поля, свойства. Теорема Остроградского. Линейный интеграл. Циркуляция векторного поля. Ротор (вихрь) векторного поля, свойства ротора. Теорема Стокса. Потенциальное поле. Потенциал. Соленоидальное поле. Ряды. Числовые ряды, сходимость и сумма ряда. Необходимое условие сходимости. Свойства сходящихся рядов. Достаточные признаки сходимости рядов с неотрицательными членами (признаки сравнения, Даламбера, Гаусса, радикальный признак Коши, интегральный признак). Знакочередующиеся ряды. Признак Лейбница. Знакопеременные ряды. Абсолютно и условно сходящиеся ряды. Функциональные ряды, область сходимости, методы её определения.Степенные ряды, действия над ними. Теорема Абеля о сходимости степенных рядов. Формулы для вычисления радиуса сходимости степенных рядов. Ряды Тейлора и Маклорена. Разложение функций у =sin x, cos x, ex, (1+x)m, ln (1+x), arctg x в степенные ряды. Применение степенных рядов в приближенных вычислениях (приближенное вычисление значений функций, определенных интегралов, приближенное решение дифференциальных уравнений). Тригонометрические ряды Фурье. Разложение функций в тригонометрические ряды Фурье. Операционное исчисление. Начальная функция (оригинал) и ее изображение. Теорема о существовании изображения. Теорема единственности оригинала. Свойство линейности изображения. Таблица оригиналов и изображений изображений некоторых функций. Теорема подобия. Теорема смещения. Теорема запаздывания. Теорема свертывания. Дифференцирование оригиналов. Интегрирование оригиналов. Таблица оригиналов и их изображений. Интегрирование линейных дифференциальных уравнений с постоянными коэффициентами. Теория вероятностей. Случайные события, алгебра событий. Относительная частота, статистическое определение вероятности. Классическое определение вероятности. Геометрическое определение вероятности, задача о встрече. Формулы комбинаторики. Теоремы сложения. Независимые события, теоремы умножения. Формула полной вероятности. Формулы Байеса. Повторение испытаний. Формула Бернулли. Наивероятнейшее число событий. Локальная и интегральная теоремы Лапласа. Случайные величины. Функция распределения (интегральный закон распределения). Плотность распределения (дифференциальный закон распределения). Математическое ожидание, его свойства. Дисперсия, ее свойства, среднее квадратическое отклонение. Основные примеры распределений случайных величин (биномиальное, геометрическое, гипергеометрическое, Пуассона, равномерное, показательное, нормальное). Вероятность попадания в заданный интервал нормально распределенной случайной величины Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс. Распределения, связанные с нормальным. Многомерные случайные величины. Числовые характеристики системы случайных величин. Коэффициент корреляции. Законы больших чисел. Предельные теоремы. Математическая статистика. Выборочный метод, статистическое распределение. Эмпирическая функция распределения. Полигон и гистограмма. Оценка параметров, свойства точечных оценок. Условные варианты, метод произведений. Доверительный интервал. Метод наибольшего правдоподобия. Статистическая проверка статистических гипотез. Критерии согласия. Метод наименьших квадратов. Уравнение прямой линии регрессии. Выборочный коэффициент корреляции. Линейное программирование. Общая и основная задачи линейного программирования (ЛП). Основные теоремы ЛП. Геометрический метод решения задач ЛП. Симплек-метод: определение первоначального допустимого базисного решения; проверка решения на оптимальность; переход к другому допустимому решению. Двойственные задачи: их свойства; теоремы двойственности; объективно обусловленные оценки и их смысл. Транспортная задача: экономико-математическая модель транспортной задачи; нахождение первоначального базисного распределения поставок (метод «северо-западного» угла, метод наименьших затрат); критерий оптимальности базисного распределения поставок; перераспределение поставок; вырождение транспортной задачи; открытая модель транспортной задачи. Элементы теории игр: основные понятия; антагонистические игры, платежная матрица; решение игр в смешанных стратегиях; геометрические решения игр размера 2xn, mx2; приведение матричной игры к задаче ЛП. Дискретная математика. Высказывания, логические операции над ними. Равносильность формул логики высказываний. Алгебра Буля. Представление булевой функции формулой логики высказываний. Закон двойственности. Нормальные и совершенные нормальные формы формул. Предикаты, логические операции над ними. Кванторные операции. Формулы логики предикатов, их равносильность, нормальная форма. Комбинаторные схемы. Основные понятия и определения теории графов. Изоморфизм. Матричное задание графов. Операции над графами. Кратчайший путь между вершинами. Алгоритм Дейкстры. Поток в транспортной сети. Теорема Форда-Фалкерсона. Задача о максимальном потоке. Алгоритм Форда-Фалкерсона. Список учебной литературы 1. Акулич И.Л. Математическое программирование в примерах и задачах. – М.: Высшая школа, 1986. 2. Алдохин И.П. Теория массового обслуживания в промышленности. – М.: Экономика,1980. 3. Бугров Я.С., Никольский С.М. Высшая математика, в трёх томах. – М: Дрофа, 2003. 4. Вентцель Е.С. Прикладные задачи теории вероятностей. – М.:Наука,1984. 5. Гмурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 2003. 6. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. – М.: Высшая школа, 2006. 7. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Том 1,2. – М.: Высшая школа, 2000. 8. Ефимов Н.В. Краткий курс аналитической геометрии. – М.: Наука, 1980. 9. Ильин В.А., Позняк Э.Г. Линейная алгебра. – М.: Наука, 1974. 10. Краснов М.Л., Киселев А.И., Макаренко Г.Н. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. – М.: Наука, 1981. 11. Кремер Н.Ш. Высшая математика для экономистов. М.: Юнити, 2007 12. Кремер Н.Ш. Исследование операций в экономике. М.: Юнити, 2007 13. Кузнецов Ю.Н., Кузубов В.И., Велощенко А.Б. Математическое программирование. – М.: Высшая школа, 1980. 14. Ларионов А.И., Юрченко Т.И., Новоселов А.Л. Экономико—математические методы. – М.: Высшая школа, 1991. 15. Пискунов Н.С. Дифференциальное и интегральное исчисления Том 1,2.— М.: Наука, 1988. 16. Письменный Д. Г. Конспект лекций по высшей математике. Части I и II. – М: «Айрис Пресс» 2004 г. 17. Романовский. П.Н. Ряды Фурье. Теория поля. Аналитические и специальные функции. Преобразование Лапласа. – М.: Наука, 1986. 18. Свешников А.Г., Тихонов А.Н. Теория функций комплексного переменного. – М.: Наука, 1984. 19. Сидорович А.В. Математические методы в экономике. – М.: Дело и сервис, 2001 20. Терехов Л.Л. Экономико—математические методы.—М.: Статистика, 1982.
Никитин Сергей Ильич Кропачева Наталия Юрьевна Бритаева Ольга Хаджи-Муратовна Хабурзания Манана Георгиевна
МАТЕМАТИКА
ПРАКТИКУМ по выполнению контрольных работ для студентов всех специальностей
РИО СПбГУСЭ, лицензия ЛР № 040849 Член Издательско-полиграфической ассоциации университетов России Государственный регистрационный номер 2047806003595 от 06.02.2004 г. СПб государственный университет сервиса и экономики 192171, г. Санкт-Петербург, ул. Седова, 55/1 Отпечатано в ЦОП ООО «Альфа», МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное агентство по образованию Санкт-Петербургский государственный университет сервиса и экономики Кафедра «Прикладной математики и эконометрики»
МАТЕМАТИКА ПРАКТИКУМ по выполнению контрольных работ для студентов всех специальностей Санкт-Петербург Утверждено Методическим Советом СПбГУСЭ Математика. Практикум. – СПб.: Изд-во СПбГУСЭ, 2008. – 31 с.
Практикум содержит задачи для контрольных работ по всем курсам математических дисциплин, предусмотренным учебными планами специальностей, и краткий перечень вопросов для подготовки к экзаменам. Каждая контрольная работа состоит из задач одного или нескольких разделов данного сборника, выбранных в соответствии с рабочей программой. Перечень разделов сборника, необходимых для выполнения контрольных работ по каждой специальности, сообщается студентам этой специальности в начале семестра.
Составители: канд. физ.-мат. наук, проф. С.И.Никитин; канд. физ.-мат. наук, доц. Н.Ю.Кропачева; старший преподаватель О.Х.Бритаева; старший преподаватель М.Г.Хабурзания.
© Санкт-Петербургский государственный университет 2008 г. СОДЕРЖАНИЕ
ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ КОНТРОЛЬНЫХ РАБОТ.. 4 ФОРМИРОВАНИЕ ИСХОДНЫХ ДАННЫХ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-15; просмотров: 348; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.114.8 (0.012 с.) |