Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Критерии для проверки гипотезыСодержание книги
Поиск на нашем сайте
1. Критерий для проверки гипотезы о вероятности события. Пусть проведено п независимых испытаний (п – достаточно большое число), в каждом из которых некоторое событие А появляется с одной и той же, но неизвестной вероятностью р, и найдена относительная частота появлений А в этой серии испытаний. Проверим при заданном уровне значимости α нулевую гипотезу Н0, состоящую в том, что вероятность р равна некоторому значению р0. Примем в качестве статистического критерия случайную величину , (11.1) имеющую нормальное распределение с параметрами M(U) = 0, σ(U) = 1 (то есть нормированную). Здесь q0 = 1 – p0. Вывод о нормальном распределении критерия следует из теоремы Лапласа (при достаточно большом п относительную частоту можно приближенно считать нормально распределенной с математическим ожиданием р и средним квадратическим отклонением ). Критическая область строится в зависимости от вида конкурирующей гипотезы. 1) Если Н0: р = р0, а Н1: р ≠ р0, то критическую область нужно построить так, чтобы вероятность попадания критерия в эту область равнялась заданному уровню значимости α. При этом наибольшая мощность критерия достигается тогда, когда критическая область состоит из двух интервалов, вероятность попадания в каждый из которых равна . Поскольку U симметрична относительно оси Оу, вероятность ее попадания в интервалы (-∞; 0) и (0; +∞) равна 0,5, следовательно, критическая область тоже должна быть симметрична относительно Оу. Поэтому икр определяется по таблице значений функции Лапласа из условия , а критическая область имеет вид .
Замечание. Предполагается, что используется таблица значений функции Лапласа, заданной в виде , где нижний предел интегрирования равен 0, а не -∞. Функция Лапласа, заданная таким образом, является нечетной, а ее значения на 0,5 меньше, чем значения стандартной функции Ф(х) (см. лекцию 6).
Далее нужно вычислить наблюдаемое значение критерия: . (11.2) Если |Uнабл| < uкр, то нулевая гипотеза принимается. Если |Uнабл| > uкр, то нулевая гипотеза отвергается. 2) Если конкурирующая гипотеза Н1: р > p0, то критическая область определяется неравенством U > uкр, то есть является правосторонней, причем р(U > uкр) = α. Тогда . Следовательно, икр можно найти по таблице значений функции Лапласа из условия, что . Вычислим наблюдаемое значение критерия по формуле (19.2). Если Uнабл < uкр, то нулевая гипотеза принимается. Если Uнабл > uкр, то нулевая гипотеза отвергается. 3) Для конкурирующей гипотезы Н1: р < p0 критическая область является левосторонней и задается неравенством U <- uкр, где uкр вычисляется так же, как в предыдущем случае. Если Uнабл > - uкр, то нулевая гипотеза принимается. Если Uнабл < - uкр, то нулевая гипотеза отвергается.
Пример. Пусть проведено 50 независимых испытаний, и относительная частота появления события А оказалась равной 0,12. Проверим при уровне значимости α = 0,01 нулевую гипотезу Н0: р = 0,1 при конкурирующей гипотезе Н1: р > 0,1. Найдем Критическая область является правосторонней, а икр находим из равенства Ф(uкр) = Из таблицы значений функции Лапласа определяем uкр = 2,33. Итак, Uнабл < uкр, и гипотеза о том, что р = 0,1, принимается.
2. Критерий для проверки гипотезы о математическом ожидании.
Пусть генеральная совокупность Х имеет нормальное распределение, и требуется проверить предположение о том, что ее математическое ожидание равно некоторому числу а0. Рассмотрим две возможности. 1) Известна дисперсия σ2 генеральной совокупности. Тогда по выборке объема п найдем выборочное среднее и проверим нулевую гипотезу Н0: М(Х) = а0. Учитывая, что выборочное среднее является несмещенной оценкой М(Х), то есть М() = М(Х), можно записать нулевую гипотезу так: М() = а0. Для ее проверки выберем критерий . (11.3) Это случайная величина, имеющая нормальное распределение, причем, если нулевая гипотеза справедлива, то М(U) = 0, σ(U) = 1. Выберем критическую область в зависимости от вида конкурирующей гипотезы: ü если Н1: М() ≠ а0, то икр: , критическая область двусторонняя, , и, если |Uнабл| < uкр, то нулевая гипотеза принимается; если |Uнабл| > uкр, то нулевая гипотеза отвергается. ü если Н1: М() > а0, то икр: , критическая область правосторонняя, и, если Uнабл < uкр, то нулевая гипотеза принимается; если Uнабл > uкр, то нулевая гипотеза отвергается. ü если Н1: М() < а0, то икр: , критическая область левосторонняя, и, если Uнабл > - uкр, то нулевая гипотеза принимается; если Uнабл < - uкр, то нулевая гипотеза отвергается.
|
||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 210; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.232.215 (0.009 с.) |