Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Критерии для проверки гипотезы

Поиск

1. Критерий для проверки гипотезы о вероятности события.

Пусть проведено п независимых испытаний (п – достаточно большое число), в каждом из которых некоторое событие А появляется с одной и той же, но неизвестной вероятностью р, и найдена относительная частота появлений А в этой серии испытаний. Проверим при заданном уровне значимости α нулевую гипотезу Н0, состоящую в том, что вероятность р равна некоторому значению р0.

Примем в качестве статистического критерия случайную величину

, (11.1)

имеющую нормальное распределение с параметрами M(U) = 0, σ(U) = 1 (то есть нормированную). Здесь q0 = 1 – p0. Вывод о нормальном распределении критерия следует из теоремы Лапласа (при достаточно большом п относительную частоту можно приближенно считать нормально распределенной с математическим ожиданием р и средним квадратическим отклонением ).

Критическая область строится в зависимости от вида конкурирующей гипотезы.

1) Если Н0: р = р0, а Н1: р ≠ р0, то критическую область нужно построить так, чтобы вероятность попадания критерия в эту область равнялась заданному уровню значимости α. При этом наибольшая мощность критерия достигается тогда, когда критическая область состоит из двух интервалов, вероятность попадания в каждый из которых равна . Поскольку U симметрична относительно оси Оу, вероятность ее попадания в интервалы (-∞; 0) и (0; +∞) равна 0,5, следовательно, критическая область тоже должна быть симметрична относительно Оу. Поэтому икр определяется по таблице значений функции Лапласа из условия , а критическая область имеет вид .

 

Замечание. Предполагается, что используется таблица значений функции Лапласа, заданной в виде , где нижний предел интегрирования равен 0, а не -∞. Функция Лапласа, заданная таким образом, является нечетной, а ее значения на 0,5 меньше, чем значения стандартной функции Ф(х) (см. лекцию 6).

 

Далее нужно вычислить наблюдаемое значение критерия:

. (11.2)

Если |Uнабл| < uкр, то нулевая гипотеза принимается.

Если |Uнабл| > uкр, то нулевая гипотеза отвергается.

2) Если конкурирующая гипотеза Н1: р > p0, то критическая область определяется неравенством U > uкр, то есть является правосторонней, причем р(U > uкр) = α. Тогда . Следовательно, икр можно найти по таблице значений функции Лапласа из условия, что . Вычислим наблюдаемое значение критерия по формуле (19.2).

Если Uнабл < uкр, то нулевая гипотеза принимается.

Если Uнабл > uкр, то нулевая гипотеза отвергается.

3) Для конкурирующей гипотезы Н1: р < p0 критическая область является левосторонней и задается неравенством U <- uкр, где uкр вычисляется так же, как в предыдущем случае.

Если Uнабл > - uкр, то нулевая гипотеза принимается.

Если Uнабл < - uкр, то нулевая гипотеза отвергается.

 

Пример. Пусть проведено 50 независимых испытаний, и относительная частота появления события А оказалась равной 0,12. Проверим при уровне значимости α = 0,01 нулевую гипотезу Н0: р = 0,1 при конкурирующей гипотезе Н1: р > 0,1. Найдем Критическая область является правосторонней, а икр находим из равенства Ф(uкр) = Из таблицы значений функции Лапласа определяем uкр = 2,33. Итак, Uнабл < uкр, и гипотеза о том, что р = 0,1, принимается.

 

2. Критерий для проверки гипотезы о математическом ожидании.

 

Пусть генеральная совокупность Х имеет нормальное распределение, и требуется проверить предположение о том, что ее математическое ожидание равно некоторому числу а0. Рассмотрим две возможности.

1) Известна дисперсия σ2 генеральной совокупности. Тогда по выборке объема п найдем выборочное среднее и проверим нулевую гипотезу Н0: М(Х) = а0.

Учитывая, что выборочное среднее является несмещенной оценкой М(Х), то есть М() = М(Х), можно записать нулевую гипотезу так: М() = а0. Для ее проверки выберем критерий

. (11.3)

Это случайная величина, имеющая нормальное распределение, причем, если нулевая гипотеза справедлива, то М(U) = 0, σ(U) = 1.

Выберем критическую область в зависимости от вида конкурирующей гипотезы:

ü если Н1: М() ≠ а0, то икр: , критическая область двусторонняя, , и, если |Uнабл| < uкр, то нулевая гипотеза принимается; если |Uнабл| > uкр, то нулевая гипотеза отвергается.

ü если Н1: М() > а0, то икр: , критическая область правосторонняя, и, если Uнабл < uкр, то нулевая гипотеза принимается; если Uнабл > uкр, то нулевая гипотеза отвергается.

ü если Н1: М() < а0, то икр: , критическая область левосторонняя, и, если Uнабл > - uкр, то нулевая гипотеза принимается; если Uнабл < - uкр, то нулевая гипотеза отвергается.



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 210; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.153.232 (0.007 с.)