Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дисперсия генеральной совокупности неизвестна.Содержание книги
Поиск на нашем сайте
В этом случае выберем в качестве критерия случайную величину , (11.4) где S – исправленное среднее квадратическое отклонение. Такая случайная величина имеет распределение Стьюдента с k = n – 1 степенями свободы. Рассмотрим те же, что и в предыдущем случае, конкурирующие гипотезы и соответствующие им критические области. Предварительно вычислим наблюдаемое значение критерия: . (11.5) - если Н1: М() ≠ а0, то критическая точка tдвуст.кр. находится по таблице критических точек распределения Стьюдента по известным α и k = n – 1. Если | Tнабл | < tдвуст.кр., то нулевая гипотеза принимается. Если | Tнабл | > tдвуст.кр., то нулевая гипотеза отвергается. - если Н1: М() > а0, то по соответствующей таблице находят tправост.кр.(α, k) – критичес-кую точку правосторонней критической области. Нулевая гипотеза принимается, если Tнабл < tправост.кр.. - при конкурирующей гипотезе Н1: М() < а0 критическая область является левосторон-ней, и нулевая гипотеза принимается при условии Tнабл > - tправост.кр.. Если Tнабл < - tправост.кр.., нулевую гипотезу отвергают.
3. Критерий для проверки гипотезы о сравнении двух дисперсий.
Пусть имеются две нормально распределенные генеральные совокупности Х и Y. Из них извлечены независимые выборки объемов соответственно п1 и п2, по которым вычислены исправленные выборочные дисперсии и . Требуется при заданном уровне значимости α проверить нулевую гипотезу Н0: D(X) = D(Y) о равенстве дисперсий рассматриваемых генеральных совокупностей. Учитывая несмещенность исправленных выборочных дисперсий, можно записать нулевую гипотезу так: Н0: М () = М (). (11.6) Замечание. Конечно, исправленные дисперсии, вычисленные по выборкам, обычно оказываются различными. При проверке гипотезы выясняется, является ли это различие незначимым и обусловленным случайными причинами (в случае принятия нулевой гипотезы) или оно является следствием того, что сами генеральные дисперсии различны. В качестве критерия примем случайную величину - (11.7) - отношение большей выборочной дисперсии к меньшей. Она имеет распределение Фишера-Снедекора со степенями свободы k1 = n1 – 1 и k2 = n2 – 1, где п1 – объем выборки, по которой вычислена большая исправленная дисперсия, а п2 – объем второй выборки.
Рассмотрим два вида конкурирующих гипотез: ü пусть Н1: D(X) > D(Y). Наблюдаемым значением критерия будет отношение большей из исправленных дисперсий к меньшей: . По таблице критических точек распределения Фишера-Снедекора можно найти критическую точку Fнабл(α; k1; k2). При Fнабл < Fкр нулевая гипотеза принимается, при Fнабл > Fкр отвергается. ü если Н1: D(X) ≠ D(Y), то критическая область является двусторонней и определяется неравенствами F < F1, F > F2, где р(F < F1) = р(F > F2) = α/2. При этом достаточно найти правую критическую точку F2 = Fкр (, k1, k2). Тогда при Fнабл < Fкр нулевая гипотеза принимается, при Fнабл > Fкр отвергается.
4. Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины . Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения. 1. Проверка гипотезы о нормальном распределении. Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Доя удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вари ант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку: варианты………..х1 х2 … хs частоты………….п1 п2 … пs, где хi – значения середин интервалов, а пi – число вариант, попавших в i-й интервал (эмпи-рические частоты). По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σВ. Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M(X) = , D(X) = . Тогда можно найти количество чисел из выборки объема п, которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i-й интервал: , где аi и bi - границы i-го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: пi =n·pi. Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины
. (11.8) Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупно-сти закон распределения случайной величины (11.8) при стремится к закону распределения с числом степеней свободы k = s – 1 – r, где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием (11.9) где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - . Итак, для проверки нулевой гипотезы Н0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия: , (11.10) а по таблице критических точек распределения χ2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.
2. Проверка гипотезы о равномерном распределении. При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам: , (11.11) где а* и b* - оценки а и b. Действительно, для равномерного распределения М(Х) = , , откуда можно получить систему для определения а* и b*: , решением которой являются выражения (11.10). Затем, предполагая, что , можно найти теоретические частоты по формулам Здесь s – число интервалов, на которые разбита выборка. Наблюдаемое значение критерия Пирсона вычисляется по формуле (11.8), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении. 3. Проверка гипотезы о показательном распределении. В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот ni (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.
Критерий Колмогорова. Этот критерий применяется для проверки простой гипотезы Н0 о том, что независимые одинаково распределенные случайные величины Х1, Х2, …, Хп имеют заданную непрерывную функцию распределения F(x). Найдем функцию эмпирического распределения Fn(x) и будем искать границы двусторонней критической области, определяемой условием . (11.10) А.Н.Колмогоров доказал, что в случае справедливости гипотезы Н0 распределение статистики Dn не зависит от функции F(x), и при
где - (11.12) - критерий Колмогорова, значения которого можно найти в соответствующих таблицах. Критическое значение критерия λп(α) вычисляется по заданному уровню значимости α как корень уравнения . Можно показать, что приближенное значение вычисляется по формуле , где z – корень уравнения На практике для вычисления значения статистики Dn используется то, что , где а - вариационный ряд, построенный по выборке Х1, Х2, …, Хп. Можно дать следующее геометрическое истолкование критерия Колмогорова: если изобразить на плоскости Оху графики функций Fn(x), Fn(x) ±λn(α) (рис. 1), то гипотеза Н0 верна, если график функции F(x) не выходит за пределы области, лежащей между графиками функций Fn(x) -λn(α) и Fn(x) +λn(α).
х
Приближенный метод проверки нормальности распределения, связанный с оценками коэффициентов асимметрии и эксцесса.
Определим по аналогии с соответствующими понятиями для теоретического распределения асимметрию и эксцесс эмпирического распределения.
Определение 11.8. Асимметрия эмпирического распределения определяется равенством , (11.13) где т3 – центральный эмпирический момент третьего порядка. Эксцесс эмпирического распределения определяется равенством , (11.14) где т4 – центральный эмпирический момент четвертого порядка. Как известно, для нормально распределенной случайной величины асимметрия и эксцесс равны 0. Поэтому, если соответствующие эмпирические величины достаточно малы, можно предположить, что генеральная совокупность распределена по нормальному закону.
Лекция 12.
|
|||||||
Последнее изменение этой страницы: 2016-12-13; просмотров: 352; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.69.109 (0.011 с.) |