Дисперсия генеральной совокупности неизвестна. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дисперсия генеральной совокупности неизвестна.

Поиск

В этом случае выберем в качестве критерия случайную величину

, (11.4)

где S – исправленное среднее квадратическое отклонение. Такая случайная величина имеет распределение Стьюдента с k = n – 1 степенями свободы. Рассмотрим те же, что и в предыдущем случае, конкурирующие гипотезы и соответствующие им критические области. Предварительно вычислим наблюдаемое значение критерия:

. (11.5)

- если Н1: М() ≠ а0, то критическая точка tдвуст.кр. находится по таблице критических точек распределения Стьюдента по известным α и k = n – 1.

Если | Tнабл | < tдвуст.кр., то нулевая гипотеза принимается.

Если | Tнабл | > tдвуст.кр., то нулевая гипотеза отвергается.

- если Н1: М() > а0, то по соответствующей таблице находят tправост.кр.(α, k) – критичес-кую точку правосторонней критической области. Нулевая гипотеза принимается, если

Tнабл < tправост.кр..

- при конкурирующей гипотезе Н1: М() < а0 критическая область является левосторон-ней, и нулевая гипотеза принимается при условии Tнабл > - tправост.кр.. Если Tнабл < - tправост.кр.., нулевую гипотезу отвергают.

 

3. Критерий для проверки гипотезы о сравнении двух дисперсий.

 

Пусть имеются две нормально распределенные генеральные совокупности Х и Y. Из них извлечены независимые выборки объемов соответственно п1 и п2, по которым вычислены исправленные выборочные дисперсии и . Требуется при заданном уровне значимости α проверить нулевую гипотезу Н0: D(X) = D(Y) о равенстве дисперсий рассматриваемых генеральных совокупностей. Учитывая несмещенность исправленных выборочных дисперсий, можно записать нулевую гипотезу так:

Н0: М () = М (). (11.6)

Замечание. Конечно, исправленные дисперсии, вычисленные по выборкам, обычно оказываются различными. При проверке гипотезы выясняется, является ли это различие незначимым и обусловленным случайными причинами (в случае принятия нулевой гипотезы) или оно является следствием того, что сами генеральные дисперсии различны.

В качестве критерия примем случайную величину

- (11.7)

- отношение большей выборочной дисперсии к меньшей. Она имеет распределение Фишера-Снедекора со степенями свободы k1 = n1 – 1 и k2 = n2 – 1, где п1 – объем выборки, по которой вычислена большая исправленная дисперсия, а п2 – объем второй выборки.

Рассмотрим два вида конкурирующих гипотез:

ü пусть Н1: D(X) > D(Y). Наблюдаемым значением критерия будет отношение большей из исправленных дисперсий к меньшей: . По таблице критических точек распределения Фишера-Снедекора можно найти критическую точку Fнабл(α; k1; k2). При Fнабл < Fкр нулевая гипотеза принимается, при Fнабл > Fкр отвергается.

ü если Н1: D(X) ≠ D(Y), то критическая область является двусторонней и определяется неравенствами F < F1, F > F2, где р(F < F1) = р(F > F2) = α/2. При этом достаточно найти правую критическую точку F2 = Fкр (, k1, k2). Тогда при Fнабл < Fкр нулевая гипотеза принимается, при Fнабл > Fкр отвергается.

 

4. Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины .

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Доя удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вари

ант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х1 х2 … хs

частоты………….п1 п2 … пs,

где хi – значения середин интервалов, а пi – число вариант, попавших в i-й интервал (эмпи-рические частоты).

По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σВ. Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M(X) = , D(X) = . Тогда можно найти количество чисел из выборки объема п, которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i-й интервал:

,

где аi и bi - границы i-го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: пi =n·pi. Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (11.8)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупно-сти закон распределения случайной величины (11.8) при стремится к закону распределения с числом степеней свободы k = s – 1 – r, где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(11.9)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (11.10)

а по таблице критических точек распределения χ2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

 

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

, (11.11)

где а* и b* - оценки а и b. Действительно, для равномерного распределения М(Х) = , , откуда можно получить систему для определения а* и b*: , решением которой являются выражения (11.10).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (11.8), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот ni (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

 

Критерий Колмогорова.

Этот критерий применяется для проверки простой гипотезы Н0 о том, что независимые одинаково распределенные случайные величины Х1, Х2, …, Хп имеют заданную непрерывную функцию распределения F(x).

Найдем функцию эмпирического распределения Fn(x) и будем искать границы двусторонней критической области, определяемой условием

. (11.10)

А.Н.Колмогоров доказал, что в случае справедливости гипотезы Н0 распределение статистики Dn не зависит от функции F(x), и при

где - (11.12)

- критерий Колмогорова, значения которого можно найти в соответствующих таблицах. Критическое значение критерия λп(α) вычисляется по заданному уровню значимости α как корень уравнения .

Можно показать, что приближенное значение вычисляется по формуле

,

где z – корень уравнения

На практике для вычисления значения статистики Dn используется то, что

, где

а - вариационный ряд, построенный по выборке Х1, Х2, …, Хп.

Можно дать следующее геометрическое истолкование критерия Колмогорова: если изобразить на плоскости Оху графики функций Fn(x), Fn(x) ±λn(α) (рис. 1), то гипотеза Н0 верна, если график функции F(x) не выходит за пределы области, лежащей между графиками функций Fn(x) -λn(α) и Fn(x) +λn(α).

 

х

 

Приближенный метод проверки нормальности распределения, связанный с оценками коэффициентов асимметрии и эксцесса.

 

Определим по аналогии с соответствующими понятиями для теоретического распределения асимметрию и эксцесс эмпирического распределения.

 

Определение 11.8. Асимметрия эмпирического распределения определяется равенством

, (11.13)

где т3 – центральный эмпирический момент третьего порядка.

Эксцесс эмпирического распределения определяется равенством

, (11.14)

где т4 – центральный эмпирический момент четвертого порядка.

Как известно, для нормально распределенной случайной величины асимметрия и эксцесс равны 0. Поэтому, если соответствующие эмпирические величины достаточно малы, можно предположить, что генеральная совокупность распределена по нормальному закону.

 

Лекция 12.



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 352; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.69.109 (0.011 с.)