Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Скорость и ускорение при гармонических колебаниях.

Поиск

Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями.

Согласно определению скорости, скорость – это производная от координаты по времени.

Согласно определению ускорения, ускорение – это производная от скорости по времени.

Гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса).

Гармонические колебания описываются уравнением типа: , где

s – смещение колеблющейся точки от положения равновесия.

А - максимальное значение колеблющейся величины, называемое амплитудой колебания

ω0круговая (циклическая) частота,

φ — начальная фаза колебания в момент времени t=0,

0t+φ) - фаза колебания в момент времени t

Фаза колебания есть значение колеблющейся величины в данный момент времени. Так как косинус имеет значение в пределах от +1 до –1, то s может принимать значения от +А до –А.
Определенные состояния системы, которая совершает гармонические колебания, повторяются через промежуток времени Т, имеющий название период колебания, за который фаза колебания получает приращение (изменение) 2π, т. е.

откуда
(2)
Величина, обратная периоду колебаний,
(3)
т. е. число полных колебаний, которые совершаются в единицу времени, называется частотой колебаний. Сопоставляя (2) и (3), найдем

Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, во время которого за 1 с совершается один цикл процесса.
Найдем первую и вторую производные по времени от величины s, совершающей гармонические колебания:
(4)
(5)
т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин в формулах (4) и (5) соответственно равны Аω0 и Аω02. Фаза величины в формуле (4) отличается от фазы величины в формуле (1) на π/2, а фаза величины в выражении (5) отличается от фазы величины (1) на π. Значит, в моменты времени, когда s=0, ds/dt имеет наибольшие значения; когда же s становится равным максимальному отрицательному значению, то d2s/dt2 равен наибольшему положительному значению.

Дифференциальное уравнение гармонических колебаний материальной точки.

, или, где m – масса точки, k – коэффициент квазиупругой силы (k=mw2).

 

Пружинный маятник

Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), либо горизонтально (горизонтальный пружинный маятник).

где ах – ускорение, m - масса, х - смещение пружины, k – жесткость пружины.

Это уравнение называют уравнением свободных колебаний пружинного маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

1)силы трения, действующие на тело, пренебрежимо малы и поэтому их можно не учитывать;

2) деформации пружины в процессе колебаний тела невелики, так что можно их считать упругими и в соответствии с этим пользоваться законом Гука.

Закон Гука, устанавливает линейную зависимость между упругой деформацией твердого тела и приложенным механическим напряжением. Напр., если стержень длиной l и поперечным сечением S растянут продольной силой F, то его удлинение = Fl/ ES, где E — модуль упругости (модуль Юнга).



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 1480; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.144.162 (0.006 с.)