Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Скорость и ускорение при гармонических колебаниях.Содержание книги
Поиск на нашем сайте
Колебания, при которых изменения физических величин происходят по закону косинуса или синуса (гармоническому закону), наз. гармоническими колебаниями. Согласно определению скорости, скорость – это производная от координаты по времени. Согласно определению ускорения, ускорение – это производная от скорости по времени. Гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса). Гармонические колебания описываются уравнением типа: , где s – смещение колеблющейся точки от положения равновесия. А - максимальное значение колеблющейся величины, называемое амплитудой колебания ω0 — круговая (циклическая) частота, φ — начальная фаза колебания в момент времени t=0, (ω0t+φ) - фаза колебания в момент времени t Фаза колебания есть значение колеблющейся величины в данный момент времени. Так как косинус имеет значение в пределах от +1 до –1, то s может принимать значения от +А до –А. Дифференциальное уравнение гармонических колебаний материальной точки. , или, где m – масса точки, k – коэффициент квазиупругой силы (k=mw2).
Пружинный маятник Колебательная система в этом случае представляет собой совокупность некоторого тела и прикрепленной к нему пружины. Пружина может располагаться либо вертикально (вертикальный пружинный маятник), либо горизонтально (горизонтальный пружинный маятник). где ах – ускорение, m - масса, х - смещение пружины, k – жесткость пружины. Это уравнение называют уравнением свободных колебаний пружинного маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения: 1)силы трения, действующие на тело, пренебрежимо малы и поэтому их можно не учитывать; 2) деформации пружины в процессе колебаний тела невелики, так что можно их считать упругими и в соответствии с этим пользоваться законом Гука. Закон Гука, устанавливает линейную зависимость между упругой деформацией твердого тела и приложенным механическим напряжением. Напр., если стержень длиной l и поперечным сечением S растянут продольной силой F, то его удлинение = Fl/ ES, где E — модуль упругости (модуль Юнга).
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 1480; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.144.162 (0.006 с.) |