Поле бесконечной равномерно заряженной



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Поле бесконечной равномерно заряженной



Прямолинейной нити

 

Рассмотрим равномерно заряженную бесконечно длинную нить. Линейная плотность заряда равна t.

Заряд, равномерно распределённый по нити, обладает симметрией – он симметричен относительно оси.

Нить имеет бесконечную длину, поэтому любому эле-ментарному заряду dq1 можно сопоставить другой элементарный заряд dq2, расположенный симметрично относительно некоторой точки в электростатическом поле.

Поскольку расстояние от эле-ментарных зарядов до этой точки одинаково, модули напряжён-ностей Е1 и Е2 одинаковы. Поэтому результирующая напряжённость

Е = Е1+Е2 направлена перпен-дикулярно нити (см. рисунок).

Очевидно, что и в других точ-ках, расположенных на таком же расстоянии от нити, напря-жённость будет иметь такую же величину и направление.

Элементарные заряды и точка в поле были выбраны случайно, поэтому вывод справедлив как для всех остальных элементарных зарядов, так и для всех точек поля.

Это означает, что электрическое поле, созданное заряженной нитью, симметрично относительно оси нити. Другими словами – симметрия поля тождественна симметрии заряда, создающего поле.

Таким образом, векторы напряжённости во всех точках окружающего пространства перпендикулярны нити и модули напряжённости на одинаковых расстояниях от нити одинаковы.

Расчёт напряжённости поля с помощью теоремы Гаусса следует начинать с получения выражения для потока вектора Е.

В свою очередь, выражение для потока следует начинать с выбора формы замкнутой поверхности и её положения относительно источника поля.

Расчёт потока будет максимально прост, если выбрать такую поверхность, симметрия которой идентична симметрии создаю-щего поле заряда.

В данном случае удобно пользоваться замкнутой поверхностью с осевой симметрией.

Такой поверхностью является цилиндр, ось которого совпадает с нитью. Пусть высота цилиндра равна l, а радиус основания – r.

Поток вектора напряжённости поля, созданного нитью, складывается из потока через торцевые поверхности цилиндра и потока через боковую поверхность.

Поток через торцевые поверхности равен нулю, так как векторы напряжённости перпендикулярны нити и, соответ-ственно угол между векторами Е и n равен 900,

.

 

Поток через боковую поверхность

.

Поскольку все точки боковой поверхности расположены на одинаковых расстояниях от нити, модули напряжённости во всех точках боковой поверхности цилиндра одинаковы, т. е.

.

Таков вид выражения для потока вектора рассчитываемой напряжённости.

Следующий этап вычисления напряжённости электро-статического поля – расчёт суммарного заряда, охваченного замкнутой поверхностью.

Заряд, охваченный поверхностью s, можно найти так:

.

Тогда, по теореме Гаусса,

или

.

Отсюда

.

Таким образом, напряжённость электрического поля, создан-ного равномерно заряженной нитью, прямо пропорциональна линейной плотности заряда нити и обратно пропорциональна расстоянию от нити до интересующей нас точки.

Обратите внимание – напряжённость обратно пропорцио-нальна первой степени расстояния от нити (напряжённость поля точечного заряда обратно пропорциональна квадрату расстояния от заряда).



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.192.66.171 (0.006 с.)