Поверхностный эффект в проводниках 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Поверхностный эффект в проводниках

Поиск

опубликовано: 30.03.2015.

Сущность этого явления заключается в следующем. Как известно, магнитные линии поля прямолинейного проводника имеют форму концентрических окружностей. Магнитное поле образуется как внутри проводника, так и в пространстве, окружающем проводник.

Прямолинейный проводник с током мы можем разбить на отдельные нити тока, параллельные друг другу. Чем ближе такая нить лежит к оси самого проводника, тем больший магнитный поток, замыкающийся внутри проводника, ее охватывает. Индуктивность нити тока и индуктивное сопротивлениепропорциональны магнитному потоку, сцепленному с ней. Поэтому внутренние нити проводника, по которым проходит переменный ток, имеют большее индуктивное сопротивление, чем наружные периферийные нити. Последнее вызывает неравномерное распределение тока по сечению проводника, так что плотность тока будет возрастать от оси к поверхности проводника. Это явление называется поверхностным эффектом.

Рисунок 1. Распределение переменного тока по сечению проводника

Неравномерное распределение плотности тока приводит к увеличению сопротивления проводника. Сопротивление проводника переменному току с учетом поверхностного эффекта мы назвали активным сопротивлением в отличие от сопротивления (омического), которое оказал бы этот проводникпостоянному току.

При стандартной частоте 50 Гц, небольшом сечении и медных проводах явление поверхностного эффекта сказывается слабо. При высокой частоте, большом сечении и железных проводах оно значительно.

 

2. Устройство и принцип действия приборов электромагнитной системы.

3. Неисправности силовых трансформаторов.

Текущие ремонты трансформаторов проводят в следующие сроки:

  • трансформаторов центральных распределительных подстанций — по местным инструкциям, но не реже 1 раза в год;
  • всех остальных — по мере необходимости, но не реже 1 раза в 3 года.

Первый капитальный ремонт трансформаторов подстанций осуществляют не позже, чем через 6 лет после ввода в эксплуатацию, а последующие ремонты проводят по мере необходимости в зависимости от результатов измерений и состояния трансформатора.

В объем текущего ремонта входят следующие работы:

  • наружный осмотр и устранение повреждений,
  • чистка изоляторов и бака,
  • спуск грязи из расширителя,
  • доливка масла и проверка маслоуказателя,
  • проверка термосифонных фильтров и при необходимости замена сорбента,
  • проверка состояния пробивного предохранителя, циркуляционных труб, сварных швов, фланцевых уплотнений,
  • проверка защит,
  • отбор и проверка проб масла,
  • проведение профилактических испытаний и измерений.

В объем капитального ремонта входят все работы, предусмотренные текущим ремонтом, а также ремонт обмоток, магнитопровода, проверка состояния контактных соединений обмоток к переключателю напряжения и выводам, проверка переключающих устройств, ремонт их контактов и механизма переключения, проверка состояния бака трансформатора, расширители и трубопроводов, ремонт вводов.

Трансформатор аварийно выводится из работы в ремонт при следующих условиях:

  • сильном внутреннем потрескивании, характерном для электрического разряда, или неравномерном шуме,
  • ненормальном и постоянно нарастающем нагреве при нормальной нагрузке и охлаждении,
  • выбросе масла из расширителя или разрушении диафрагмы выхлопной трубы,
  • течи масла и понижении уровня его ниже допустимого предела,
  • при получении неудовлетворительных результатов химического анализа масла.

Старение изоляции обмоток и увлажнение масла могут привести к замыканию на корпус и междуфазным замыканиям в обмотках трансформатора, что выражается в ненормальном шуме работающего трансформатора.

Неисправность в виде «пожара стали», которая происходит из-за нарушения межлистовой изоляции сердечника или изоляции стяжных болтов, приводит к возрастанию нагрева корпуса и масла при нормальной нагрузке, гудению и характерному потрескиванию внутри трансформатора.

Повышенное «гудение» в трансформаторе может происходить по причине ослабления прессовки маг нитопровода, значительной несимметрии нагрузки фаз и при работе трансформатора на повышенном напряжении. Потрескивание внутри трансформатора указывает на перекрытие (но не пробой) между обмоткой или отводами на корпус, или обрыв заземления, при котором могут происходить электрические разряды с обмотки или ее отводов на корпус.

Характерные неисправности трансформатора при ненормальном его гудении
Возможные причины неисправности Определение и устранение неисправностей
Ослабление болтов, крепящих крышку трансформатора, и других деталей (расширителя, выхлопной трубы и др.) Проверить и подтянуть все болты
Трансформатор работает при повышенном напряжении Установить переключатель напряжения в соответствующее положение.
Нарушена прессовка стыков в магнитопроводе Ослабла затяжка вертикальных шпилек, стягивающих стержни с ярмами. Перепрессовать магнитопровод, заменив прокладки в верхних и нижних стыках магнитопровода
Ослабление прессовки шихтованного магнитопровода Проверить все прессующие болты и шпильки и подтянуть ослабшие
Вибрация крайних листов магнитопровода Расклинить листы магнитопровода
Перегрузка трансформатора Снизить нагрузку
Неравномерная загрузка по фазам Уменьшить несимметрию нагрузки
Замыкания между фазами, между витками обмоток Отремонтировать или заменить обмотку

Обрывы в обмотках являются следствием плохого качества контактных соединений в обмотках.

Обрыв в первичной обмотке трансформатора, соединенного по схеме треугольник—звезда, треугольник—треугольник и звезда-звезда, приводят к изменению вторичного напряжения.

Для определения объема предстоящего ремонта проводят дефектацию трансформатора, которая представляет собой комплекс работ по выявлению характера и степени повреждений его частей. На основании дефектации определяют причины, размеры повреждений и необходимый объем ремонта трансформатора. Одновременно определяют потребности в материалах, инструментах, приспособлениях для производства ремонта.

Характерные неисправности силовых трансформаторов
Признаки неисправности Возможные причины неисправности Определение и устранение неисправностей
Перегрев трансформаторов Трансформатор перегружен Установить перегрузку по приборам или снятием суточного графика тока. Устранить перегрузку включением другого трансформатора или отключить менее ответственных потребителей
Высокая температура воздуха в помещении трансформатора При превышении температуры воздуха на 8 — 10 °С на расстоянии 1,5 — 2 м от трансформатора на середине его высоты — улучшить вентиляцию помещения
Снизился уровень масла в трансформаторе Долить масло до нормального уровня
Повреждение внутри трансформатора (витковое замыкание, короткозамкнутые контуры из-за повреждения изоляции стяжных болтов и шпилек и др.) При быстром развитии этих повреждений произойдет рост температуры масла, выделение газов и работа газовой защиты на сигнал или отключение
Несимметричная загрузка фаз Устранить перегрузку или уменьшить несимметрию нагрузки по фазам
Пробой обмоток на корпус, между обмотками ВН и НН или между фазами Ухудшение качества масла или понижение его уровня Изоляцию испытывают мегаомметром или повышенным напряжением
Ухудшение качества изоляции из-за старения ее При необходимости обмотку ремонтируют, а масло доливают или меняют полностью
Потрескивание внутри трансформатора Перекрытие между обмотками или отводами на корпус Вскрыть трансформатор и отремонтировать отводы обмоток и заземления
Обрыв заземления
Обрыв в обмотках Плохо выполнена пайка обмоток Часто обрыв происходит в месте изгиба кольца провода под болт
Повреждение в отводах от обмоток к выводам Заменяют гибким соединением в виде демпфера
Оплавлены или вы­горели контактные поверхности пере­ключающего устрой­ства Переключатель плохо собран или имели место корот­кие замыкания Отремонтировать или заменить переключа­тель
Течь масла из кра­нов, фланцев, свар­ных соединений Плохо притёрта пробка крана, по­вреждены прокладки фланцевых соедине­ний, нарушена плот­ность сварного шва бака трансформато­ра Кран притереть, про­кладки заменить или подтянуть болты на фланцах, подварить швы ацетиленовой сваркой. После сварки бак испы­тать водой в течение 1 — 2 ч давлением столба воды 1,5 м выше уровня масла в расширителе

Разборка трансформаторов

 

4. Основные защитные средства в электроустановках.

1-изолирующие штанги
2-изолирующие и электроизмерительные клещи
3-указатели напряжения
4-диэлектрические перчатки
5-слесарно-монтажный инструмент с изолирующими рукоятками
всё-остальные дополнительные

5. Щиты для временного ограждения токоведущих частей, находящихся под напряжением, осматривают с периодичностью 1 раз в___6__мес.

 

Билет № 13

1. Условия возникновения ЭДС самоиндукции.

Условия возникновения, величина и направление тока самоиндукции. Индуктивность проводника и соленоида. ЭДС самоиндукции. Ток при замыкании и размыкании цепи, содержащей индуктивность. Графики процессов.

Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока. При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром[3]. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. В электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током).

Индуктивность длинного прямого проводника:

Индуктивность соленоида:

1)Без сердечника

2)С сердечником

По правилу Ленца дополнительные токи, возникающие в проводниках вследствие самоиндукции, всегда направлены так, чтобы воспрепятствовать изменениям тока, текущего в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

 
 


Совмещённый графи

2. Конструкция и назначение опор ВЛ, крепление СИП на опорах.

Конструкция опор

Конструкции опор воздушных линий электропередачи весьма разнообразны и зависят от материала, из которого изготавливается опора (металлическая, железобетонная, деревянная, стеклопластиковая), назначения опоры (промежуточная, угловая, транспозиционная, переходная и т.д.), от местных условий на трассе линии (населенная местнсть или ненаселенная, горные условия, участки с болотными или слабыми грунтами и т.п.), напряжения линии, количества цепей (одноцепная, двухцепная, многоцепная) и т.д.

В конструкции многих типов опор можно встретить следующие элементы:

1. Стойка – является основным неотъемлемым элементом конструкции опоры, в отличие от остальных элементов которые могут отсутствовать. Стойка предназначена для обеспечения требуемых габаритов проводов (габарит провода — вертикальное расстояние от провода в пролёте до пересекаемых трассой инженерных сооружений, поверхности земли или воды). В конструкции опоры может быть одна, две, три и более стоек.

а б

Рисунок. Опоры ВЛ: а – двухстоечная опора; б – трехстоечная опора.

Стойка металлических опор решетчатого типа называется стволом. Ствол обычно представляет собой четырехгранную усеченную решетчатую пирамиду, выполненную из профилей стального проката (уголка, полосы, листа), и состоит из пояса, решетки и диафрагмы. Решетка, в свою очередь, имеет стержни-раскосы и распорки, а также дополнительные связи.

Рисунок. Элементы конструкции металлической опоры: 1 – пояс стойки опоры; 2 – стержни-раскосы, образующие решетку стойки; 3 – диафрагма; 4 – траверса; 5 – тросостойка.

2. Подкосы – применяются для угловых, концевых, анкерных и ответвительных опор ВЛ напряжением до 10 кВ. Они воспринимают на себя часть нагрузки опоры от одностороннего тяжения провода.

Рисунок. Угловая опора с двумя подкосами: 1 – стойка; 2 – подкос.

3. Приставка (пасынок) – частично заглубляемая в грунт, нижняя часть конструкции комбинированной опоры ВЛ напряжением до 35 кВ, состоящей из деревянных стоек и железобетонных приставок.

4. Раскосы – наклонные элементы опоры служащие для усиления её конструкции и соединяющие несколько элементов опоры между собой, например, стойку с траверсой, либо две стойки опоры.

Рисунок. Элементы конструкции комбинированной опоры: 1 – деревянная стойка опоры; 2 – железобетонная приставка (пасынок); 3 – раскос; 4 – траверса.

5. Траверса – обеспечивает крепление проводов линии электропередачи на определенном (допустимом) расстоянии от опоры и друг от друга.

а б

Рисунок. Траверсы опор: а - для ж/б опоры 10 кВ; б - для ж/б опоры 110 кВ.

Чаще всего можно встретить траверсы в виде жесткой металлической конструкции, однако существуют также деревянные траверсы и траверсы из композитных материалов.

Рисунок. Траверса опоры ВЛ 110 кВ из композитных материалов

Кроме того, на V-образных опорах типа «набла» и П-образных опорах можно встретить так называемые гибкие траверсы.

Рисунок. Опора ВЛ с «гибкой» траверсой

В некоторых конструкциях опор траверсы могут отсутствовать, например, у деревянных или железобетонных опор ВЛ напряжением до 1 кВ, у опор ВЛ с самонесущими изолированными проводами напряжением до 1 кВ, у анкерных опор ВЛ любого напряжение, где каждая фаза крепится на отдельной стойке.

Рисунок. Опора без траверсы

6. Фундамент – конструкция, заделанная в грунт и передающая на него нагрузки от опоры, изоляторов, проводов и внешних воздействий (гололед, ветер).

Рисунок. Грибовидный железобетонный фундамент

Для одностоечных опор, у которых нижний конец стойки заделывается в грунт, фундаментом служит низ стойки; для металлических опор применяются свайные или сборные грибовидные железобетонные, а при установке переходных опор и опор на болотах - монолитные бетонные фундаменты.

Рисунок. Железобетонные сваи, применяемые в односвайных и многосвайных фундаментах опор ВЛ

Рисунок. Опора ЛЭП на свайном фундаменте

7. Ригель – увеличивает боковую поверхность подземной конструкции железобетонных стоек и подножников металлических опор. Ригели увеличивают способность фундамента выдерживать горизонтальные нагрузки, действующие на опору, препятствуя ее опрокидыванию от сил тяжения проводов, при сооружении опор в слабом грунте.

Рисунок. Грибовидный железобетонный фундамент (1) с тремя ригелями (2)

8. Оттяжки – предназначены для повышения устойчивости опор и воспринимают на себя усилия от тяжения провода.

Рисунок. Опора, закрепленная с помощью оттяжек

Верхняя часть оттяжки крепится к стойке или траверсе опоры, а нижняя часть к якорю или железобетонной плите. Кроме того, в конструкцию оттяжки может входить натяжная муфта – талреп.

Рисунок. Нижняя часть оттяжки

9. Тросостойка – верхняя часть опоры, предназначенная для поддерживания грозозащитного троса. Обычно представляет собой трапециевидный шпиль на верхушке опоры. На опоре может быть одна или две тросостойки (на П-образных опорах), так же бывают опоры без тросостойки.

Рисунок. П-образная опора с двумя тросостойками: 1 – стойка; 2 – тросостойка; 3 – траверса.

10. Надставка – верхняя часть опоры, предназначенная для увеличения высоты стойки опоры.

11. Подножник (подпятник) – часть опоры, которым стойка опирается на фундамент.

а б

Указанные выше элементы опор, в зависимости от класса напряжения ВЛ, могут существенно отличаться конструкцией и габаритами.

Кроме перечисленных выше, в конструкцию опор могут входить и другие элементы. Например, элементами железобетонных опор до 10 кВ являются штыри, оголовники, хомуты, различные узлы крепления и т.п.

а б в

Рисунок. Элементы конструкции железобетонных опор ВЛ 0,4-10 кВ: а – штыри, для крепления на них изоляторов; б – хомуты, для крепления траверсы к стойке опоры; в – узел крепления подкоса.

Читайте далее об условных обозначениях опор. [Прочитать!]



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 687; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.74.47 (0.017 с.)