Конструкции трансформаторов тока 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Конструкции трансформаторов тока



По конструкции различают трансформаторы тока катушечные, одновитковые (типа ТПОЛ), многовитковые с литой изоляцией (типа ТПЛ и ТЛМ). Трансформатор типа ТЛМ предназначен для КРУ и конструктивно совмещен с одним из штепсельных разъемов первичной цепи ячейки.

Для больших токов применяют трансформаторы типа ТШЛ и ТПШЛ, у которых роль первичной обмотки выполняет шина. Электродинамическая стойкость таких трансформаторов тока определяется стойкостью шины.

Для ОРУ выпускают трансформаторы типа ТФН в фарфоровом корпусе с бумажно-масляной изоляцией и каскадного типа ТРН. Для релейной защиты имеются специальные конструкции. На выводах масляных баковых выключателей и силовых трансформаторов напряжением 35 кВ и выше устанавливаются встроенные трансформаторы тока. Погрешность их при прочих равных условиях больше, чем у отдельно стоящих трансформаторов.

 

5. Каковы условия заземления ВЛ напряжением до 1000В.

Установка заземлений на ВЛ.

Скачать межотраслевые правила

3.6. Установка заземлений на ВЛ
3.6.1. ВЛ напряжением выше 1000 В должны быть заземлены во всех РУ и у секционирующих коммутационных аппаратов, где отключена линия. Допускается:

· ВЛ напряжением 35 кB и выше с ответвлениями не заземлять на подстанциях, подключенным к этим ответвлениям, при условии, что ВЛ заземлена с двух сторон, а на этих подстанциях заземления установлены за отключенными линейными разъединителями;

· ВЛ напряжением 6 - 20 кВ заземлять только в одном РУ или у одного секционирующего аппарата либо на ближайшей к РУ или секционирующему аппарату опоре. В остальных РУ этого напряжения и у секционирующих аппаратов, где ВЛ отключена, допускается ее не заземлять при условии, что на ВЛ будут установлены заземления между рабочим местом и этим РУ или секционирующими аппаратами. На ВЛ указанные заземления следует устанавливать на опорах, имеющих заземляющие устройства.

На ВЛ напряжением до 1000 В достаточно установить заземление только на рабочем месте.
3.6.2. Дополнительно к заземлениям, указанным в п. 3.6.1 настоящих Правил, на рабочем месте каждой бригады должны быть заземлены провода всех фаз, а при необходимости и грозозащитные тросы.
3.6.3. При монтаже проводов в анкерном пролете, а также после соединения петель на анкерных опорах смонтированного участка ВЛ провода (тросы) должны быть заземлены на начальной анкерной опоре и на одной из конечных промежуточных опор (перед анкерной опорой конечной).
3.6.4. Не допускается заземлять провода (тросы) на конечной анкерной опоре смонтированного анкерного пролета, а также смонтированного участка ВЛ во избежание перехода потенциала от грозовых разрядов и других перенапряжений с проводов (тросов) готового участка ВЛ на следующий, монтируемый, ее участок.
3.6.5. На ВЛ с расщепленными проводами допускается в каждой фазе заземлять только один провод; при наличии изолирующих распорок заземлять требуется все провода фазы.
3.6.6. На одноцепных ВЛ заземление на рабочих местах необходимо устанавливать на опоре, на которой ведется работа, или на соседней. Допускается установка заземлений с двух сторон участка ВЛ, на котором работает бригада, при условии, что расстояние между заземлениями не превышает 2 км.
3.6.7. При работах на изолированном от опоры молниезащитном тросе или на конструкции опоры, когда требуется приближение к этому тросу на расстояние менее 1 м, трос должен быть заземлен. Заземление нужно устанавливать в сторону пролета, в котором трос изолирован, или в пролете на месте проведения работ.
Отсоединять и присоединять заземляющий спуск к грозозащитному тросу, изолированному от земли, следует после предварительного заземления троса.
Если на этом тросе предусмотрена плавка гололеда, перед началом работы трос должен быть отключен и заземлен с тех сторон, откуда на него может быть подано напряжение.
3.6.8. Переносные заземления следует присоединять на металлических опорах - к их элементам, на железобетонных и деревянных опорах с заземляющими спусками - к этим спускам после проверки их целости. На железобетонных опорах, не имеющих заземляющих спусков, можно присоединять заземления к траверсам и другим металлическим элементам опоры, имеющим контакт с заземляющим устройством.
В электросетях напряжением до 1000 В с заземленной нейтралью при наличии повторного заземления нулевого провода допускается присоединять переносные заземления к этому нулевому проводу.
Места присоединения переносных заземлений к заземляющим проводникам или к конструкциям должны быть очищены от краски.
Переносное заземление на рабочем месте можно присоединять к заземлителю, погруженному вертикально в грунт не менее чем на 0,5 м. Не допускается установка заземлителей в случайные навалы грунта.
3.6.9. На ВЛ напряжением до 1000 В при работах, выполняемых с опор либо с телескопической вышки без изолирующего звена, заземление должно быть установлено как на провода ремонтируемой линии, так и на все подвешенные на этих опорах провода, в том числе на неизолированные провода линий радиотрансляции и телемеханики.
3.6.10. На ВЛ, отключенных для ремонта, устанавливать, а затем снимать переносные заземления и включать имеющиеся на опорах заземляющие ножи должны работники из числа оперативного персонала: один, имеющий группу IV (на ВЛ напряжением выше 1000 В) или группу III (на ВЛ напряжением до 1000 В), второй - имеющий группу III. Допускается использование второго работника, имеющего группу III, из числа ремонтного персонала, а на ВЛ, питающих потребителя, - из числа персонала потребителя.
Отключать заземляющие ножи разрешается одному работнику, имеющему группу III, из числа оперативного персонала.
На рабочих местах ВЛ устанавливать переносные заземления может производитель работ с членом бригады, имеющим группу III. Снимать эти переносные заземления могут по указанию производителя работ два члена бригады, имеющие группу III.
3.6.11. На ВЛ при проверке отсутствия напряжения, установке и снятии заземлений один из двух работников должен находиться на земле и вести наблюдение за другим.
3.6.12. Требования к установке заземлений на ВЛ при работах в пролете пересечения с другими ВЛ, на одной отключенной цепи многоцепной ВЛ, на ВЛ под наведенным напряжением и при пофазном ремонте приведены в разд.4.15 настоящих Правил.

 

 

Билет №11.

1. Вихревые токи. Способы уменьшения вихревых токов.

 

Вихревые токи

 

  В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется ЭДС самоиндукции. Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко), которые замыкаются в массе, образуя вихревые контуры токов. Вихревыми токами (также токами Фуко) называются электрические токи, возникающие вследствие электромагнитной индукции в проводящей среде (обычно в металле) при изменении пронизывающего ее магнитного потока. Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии. Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустимпеременный ток. Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник. При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник. Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках индуцированные токи могут оказываться достаточно большими, а нагрев сердечника - значительным. Возниконвение токов Фуко (вихревых токов) Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 - 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами. В качестве примера на рисунке показаны вихревые токи, индуктируемые в массивном сердечнике, помещенном в катушку, обтекаемую переменным током. Переменное магнитное поле индуктирует токи, которые замыкаются по путям, лежащим в плоскостях, перпендикулярных направлению поля. Вихревые токи: а - в массивном сердечнике, б - в пластинчатом сердечнике Способы уменьшения токов Фуко Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа. Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины. Магнитопроводы всех машин и аппаратов переменного тока и сердечники якорей машин постоянного тока собирают из изолированных друг от друга лаком или поверхностной непроводящей пленкой (фосфатированных) пластин, выштампованных из листовой электротехнической стали. Плоскость пластин должна быть параллельна направлению магнитного потока. При таком делении сечения сердечника магнитопровода вихревые токи существенно ослабляются, так как уменьшаются магнитные потоки, которыми сцепляются контуры вихревых токов, а следовательно, понижаются и индуктируемые этими потоками э. д. с, создающие вихревые токи. В материал сердечника также вводят специальные добавки, также увеличивающие его электрическое сопротивление. Для увеличения электрического сопротивления ферромагнетика электротехническую сталь приготовляют с присадкой кремния. Шихтованный магнитопровод трансформатора Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока. Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики. Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга. Лицендрат - это система переплетенных медных проводов, в которой каждая жила изолирована от соседних. Лицендрат предназначен для использования на высокочастотных токах для предотвращения возникновения паразитных токов и токов Фуко. Применение токов Фуко Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск. В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона. Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются. Вихревые токи находят полезное применение также при индукционной плавке металлов и поверхностной закалке токами высокой частоты. Использование вихревых токов при индукционной закалке металлов

 

2. Расчет предохранителей для асинхронных двигателей.



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 407; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.221.110.87 (0.032 с.)