Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет интерференционной картины от двух источников. Интерференция света в тонкой пленке, наблюдение колец Ньютона.

Поиск

Расчет интерференционной картины от двух источников. Расчет интерференционной картины для двух источников можно провести используя две узкие параллельные щели, расположенные достаточно близко друг к другу.

Щели S1 и S2 находятся на расстоянии d друг от друга и являются когерентными источниками света. Интерференция наблюдается в произвольн­ой точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l>>d. Начало отсчета выбрано в точке О, симметричной относительно щелей. Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода

(разностью оптических длин проходимых волнами путей). Из рисунка имеем: откуда или. Из условия l>>d следует, что поэтому. Подставив найденное значение в условия интерференционного максимума и минимума: и, получим, что максимумы интенсивности будут наблюдаться при, а минимумы — при. Расстояние между двумя соседними максимумами (или минимумами) называемое шириной интерференционной полосы равно:. не зависит от порядка интерференции (величины m) и является постоянной для. обратно пропорционально d, след. при большом расстоянии между источниками, например,отдельные полосы становятся неразличимыми. Из двух предпоследних формул следует так же, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос, параллельных друг другу. Главный максимум, соответствующий m=0, проходит через точку О. Вверх и вниз от него, на равных расстояниях располагаются максимумы (минимумы) первого (m=1) и других порядков. Описанная картина справедлива только лишь при освещении монохроматическим светом. Если использовать белый свет, то интерференционные максимумы для каждой длины волны будут смещены друг относительно друга и иметь вид радужных полос. Только для m=0 максимумы всех длин волн совпадают, а в середине экрана будет наблюдаться белая полоса.

Интерференция тонких пленок. (Интерференция света в тонкой пленке) В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри и т.д.) возникающее в р-тате интерференции света, отраженного двумя поверхностями пленки. Пусть на плоскопараллельную прозрачную пленку с показателем преломления n и толщиной d под углом i падает плоская монохроматическая волна (для простоты рассм. один луч).

На поверхности пленки в точке О луч

разделится на два: частично отразится от верхней поверхности пленки, и частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0=1), и частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2 когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы и дадут интерференционную картину, которая определится оптической разностью хода между интерферирующими лучами. Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ: где показатель преломления окружающей среды принят равным 1, а обусловлен потерей полуволны при отражении света от границы раздела. Если n>n0 (n<n0), то потеря полуволны произойдет в точке О (C) и будет иметь знак минус (плюс).

Кольца Ньютона. Являются классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны.

Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падении света имеющие вид концентрических окружностей. В отраженном свете оптическая разность хода (с учетом потери половины при отражении), при условии что n=1, а I=0, где d — ширина зазора. r — радиус кривизны окружности, всем точкам которой соответствует одинаковый зазор d. Учитывая d=r2/2R. Следовательно,.

Приравняв, к условиям максимума и минимума получим выражения для радиуса m-го светлого и темного колец: Измеряя радиусы соответствующих колец можно (зная радиус кривизны линзы) определить и наоборот, найти радиус кривизны линзы.

Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волны. Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждени­я были приведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на /2. т.е. максимумам интерференции в отраженном свете соответствует минимумы в проходящем, и наоборот.

 



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 589; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.110.145 (0.008 с.)