Расчет интерференционной картины от двух источников. Интерференция света в тонкой пленке, наблюдение колец Ньютона.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Расчет интерференционной картины от двух источников. Интерференция света в тонкой пленке, наблюдение колец Ньютона.



Расчет интерференционной картины от двух источников. Расчет интерференционной картины для двух источников можно провести используя две узкие параллельные щели, расположенные достаточно близко друг к другу.

Щели S1 и S2 находятся на расстоянии d друг от друга и являются когерентными источниками света. Интерференция наблюдается в произвольн­ой точке А экрана, параллельного обеим щелям и расположенного от них на расстоянии l, причем l>>d. Начало отсчета выбрано в точке О, симметричной относительно щелей. Интенсивность в любой точке А экрана, лежащей на расстоянии х от О, определяется оптической разностью хода

(разностью оптических длин проходимых волнами путей). Из рисунка имеем: откуда или . Из условия l>>d следует, что поэтому . Подставив найденное значение в условия интерференционного максимума и минимума: и , получим, что максимумы интенсивности будут наблюдаться при , а минимумы — при . Расстояние между двумя соседними максимумами (или минимумами) называемое шириной интерференционной полосы равно: . не зависит от порядка интерференции (величины m) и является постоянной для . обратно пропорционально d, след. при большом расстоянии между источниками, например,отдельные полосы становятся неразличимыми. Из двух предпоследних формул следует так же, что интерференционная картина , создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос, параллельных друг другу. Главный максимум, соответствующий m=0, проходит через точку О. Вверх и вниз от него, на равных расстояниях располагаются максимумы (минимумы) первого (m=1) и других порядков. Описанная картина справедлива только лишь при освещении монохроматическим светом. Если использовать белый свет, то интерференционные максимумы для каждой длины волны будут смещены друг относительно друга и иметь вид радужных полос. Только для m=0 максимумы всех длин волн совпадают, а в середине экрана будет наблюдаться белая полоса.

Интерференция тонких пленок. ( Интерференция света в тонкой пленке) В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри и т.д.) возникающее в р-тате интерференции света, отраженного двумя поверхностями пленки. Пусть на плоскопараллельную прозрачную пленку с показателем преломления n и толщиной d под углом i падает плоская монохроматическая волна (для простоты рассм. один луч).

На поверхности пленки в точке О луч

разделится на два: частично отразится от верхней поверхности пленки, и частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (n0=1), и частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2 когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы и дадут интерференционную картину, которая определится оптической разностью хода между интерферирующими лучами. Оптическая разность хода, возникающая между двумя интерферирующими лучами от точки О до плоскости АВ: где показатель преломления окружающей среды принят равным 1, а обусловлен потерей полуволны при отражении света от границы раздела. Если n>n0 (n<n0), то потеря полуволны произойдет в точке О (C) и будет иметь знак минус (плюс).

Кольца Ньютона. Являются классическим примером полос равной толщины, наблюдаются при отражении света от воздушного зазора, образованного плоскопараллельной пластинкой и соприкасающейся с ней плосковыпуклой линзой с большим радиусом кривизны.

Параллельный пучок света падает нормально на плоскую поверхность линзы и частично отражается от верхней и нижней поверхностей воздушного зазора между линзой и пластинкой. При наложении отраженных лучей возникают полосы равной толщины, при нормальном падении света имеющие вид концентрических окружностей. В отраженном свете оптическая разность хода (с учетом потери половины при отражении), при условии что n=1, а I=0 , где d — ширина зазора. r — радиус кривизны окружности, всем точкам которой соответствует одинаковый зазор d. Учитывая d=r2/2R. Следовательно, .

Приравняв, к условиям максимума и минимума получим выражения для радиуса m-го светлого и темного колец: Измеряя радиусы соответствующих колец можно (зная радиус кривизны линзы) определить и наоборот, найти радиус кривизны линзы.

Как для полос равного наклона, так и для полос равной толщины положение максимумов зависит от длины волны . Поэтому система светлых и темных полос получается только при освещении монохроматическим светом. При наблюдении в белом свете получается совокупность смещенных друг относительно друга полос, образованных лучами разных длин волн, и интерференционная картина приобретает радужную окраску. Все рассуждени­я были приведены для отраженного света. Интерференцию можно наблюдать и в проходящем свете, причем в данном случае не наблюдается потери полуволны. Следовательно, оптическая разность хода для проходящего и отраженного света отличается на /2. т.е. максимумам интерференции в отраженном свете соответствует минимумы в проходящем, и наоборот.

 



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.238.249.17 (0.005 с.)