Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Портфели из двух рискованных активовСодержание книги
Поиск на нашем сайте
Объединение в одном портфеле двух видов рискованных активов аналогично объединению рискованного актива с безрисковым; эта тема обсуждалась в разделе 12.2. Просмотрите еще раз табл. 12.1, рис. 12.1 и уравнения 12.1 и 12.2.) Если один из двух активов безрисковый, то стандартное отклонение его ожидаемой ставки доходности и корреляция с другим активом равны нулю. Если оба актива являются рискованны-, w, то так или иначе необходим анализ соотношения риск/доходность. Формула для вычисления среднего значения ставки доходности любого портфеля, в котором w — это доля рискованного актива 1, а (1 - w) — это доля рискованного актива 2, имеет следующий вид: Е(r) = wE(r1)+(l-w)E(r2) (12.4) В свою очередь формула дисперсии такова: s2 = s12 + (1 - w)2 s2 + 2w (1 - w) p s1 s2 (12.5) Эти два уравнения можно сравнить с уравнениями соответственно 12.1 и 12.2. Сравнение 12.4 — это, по сути, уравнение 12.1, только вместо процентной ставки безрискового актива rr в него вставлена ожидаемая доходность рискованного актива 2, Е (r2) Уравнение 12.5 — это более общая форма уравнения 12.2. Если актив 2 безрисковой, то s 2 = 0 и уравнение 12.5 упрощается до вида уравнения 12.2. В табл. 12.2 сведены наши оценки распределения вероятности ставок доходности скованных активов 1 и 2. Обратите внимание: мы исходим из предположения, что коэффициент корреляции равен нулю (р = 0). В табл. 12.3 и в рис. 12.3 показаны комбинации средних значений и стандартных отклонений доходностей, которые можно получить при объединении в одном портфеле рискованного актива 1 и рискованного актива 2. Точка S на рис. 12.3 соответствует портфелю, который состоит исключительно из рискованного актива 1, а точка R — пор тфелю, состоящему исключительно из рискованного актива 2. Давайте покажем, как ожидаемые ставки доходности и стандартные отклонения в In 12.3 рассчитываются по формулам 12.4 и 12.5. Рассмотрим портфель С, который эит на 25% из рискованного актива 1 и на 75% — из рискованного актива 2.
Соотношение риск/доходность для портфелей с двумя рискованными eSllleSltESgeKe&eiBe
1одставив необходимые значения в уравнение 12.4, мы найдем, что ожидаемая ва доходности в точке С составит 0,095 в год: jE'(r)=0,25 E(r,) +0,75 E{r} =0,25х0,14 +0,75х0,08 =0,095 ставив в уравнение 12.5 значение w, мы выясним, что стандартное отклонение
(Т2 = W22 + (1 - w) (72 + 2w (1 - w) pO'iO'2 =0,252x0,22+0,752x0,152+0 =0,01515625 о- =УО,01515625 =0,1231 Рис. 12.3. Кривая соотношения риск/доходность: только рискованные активы Примечание. Предполагается, что £'("/•=0,14, о-/=0,20, E(r)=0,OS, crj=0, 15, /т=0. Давайте с помощью табл. 12.3 исследуем кривую, соединяющую на рис. 12.3 точки R и S. Начнем с точки R и переместим часть наших капиталов из рискованного актива 2 в рискованный актив 1. При этом наблюдается не только повышение средней ставки доходности, но и снижение стандартного отклонения. Оно снижается до тех пор, пока мы не получим портфель, который на 36% состоит из инвестиций в рискованный актив 1 и на 64% — в рискованный актив 26. Эта точка характеризует портфель с минимальной дисперсией (minimum-variance portfolio), состоящий из рискованного актива 1 и рискованного актива 2. Если в рискованный актив 1 инвестируется более 36% общего капитала, то стандартное отклонение портфеля увеличивается.
6 Формула, описывающая долю рискованного актива 1, которая минимизирует дисперсию портфеля, выглядит следующим образом:
|
||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 392; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.73.233 (0.006 с.) |