Термомеханическая кривая полимера 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Термомеханическая кривая полимера



Если термопластичный полимер подвергнуть постоянной механической нагрузке, то он будет деформироваться.

При низкой температуре полимер испытывает упругую деформацию на небольшую величину. При нагреве деформация будет увеличиваться. Чем выше температура, тем больше деформация. Таким образом получится график зависимости деформации от температуры, называемый термомеханической кривой полимера.

На графике зависимости можно выделить три основных участка (рис. 55), соответствующие разным состояниям полимера:

1. Стеклообразное состояние (СС) – на этом участке полимер деформируется на небольшую величину и ведет себя как хрупкое тело, трескается при больших нагрузках.

2. Высокоэластичное состояние (ВЭС) – здесь деформация возрастает во много раз, полимер ведет себя как эластичное упругое тело.

3. Вязкотекучее состояние (ВТС). При дальнейшем увеличении температуры полимер постепенно размягчается, деформация может увеличиваться до бесконечности. Полимер ведет себя как вязкая жидкость.

Такая кривая типична для линейных полимеров и слабо разветвленных полимеров, которые не сшиты поперечными межатомными связями.

В состав полимеров часто добавляют компоненты, которые улучшают свойства материалов. Рассмотрим их вкратце.

 

1. Стабилизаторы

Полимеры – аморфные, термодинамически неустойчивые материалы, поэтому их свойства с течением времени изменяются. Ухудшается пластичность, возрастает твердость, появляется хрупкость и т.д. Такой процесс называют старением полимера. Для замедления старения в полимер добавляют специальные вещества, называемые стабилизаторами.

2. Наполнители – вещества, добавляемые в полимерные композиции.

Например, порошковые наполнители: мел, каолин, оксиды TiO2, SiO2, древесная мука. Их доля может достигать десятков процентов. Их применяют для снижения стоимости материала, плотности, повышения прочности, упругости и пр. Можно придать специальные качества материалу, несвойственные полимеру, например электропроводность, ферромагнетизм. Возможно повышение или понижение теплопроводности, снижение усадки, улучшение звукоизоляции и т. д.

 

3. Пластификаторы – вещества, добавляемые в полимерные материалы для повышения пластичности, эластичности, уменьшения хрупкости при охлаждении или морозостойкости, для улучшения формуемости при прессовании, штамповке.

 

4. Специальные добавки. Например красители, для улучшения внешнего вида изделий.

Иногда добавляют смазки, чтобы полимеры не прилипали к формующему оборудованию. Для материалов, используемых в электротехнике, применяют специальные добавки для снижения горючести или дугогасящие добавки. Эти вещества при нагреве выделяют газ, прекращающий или затрудняющий горение (фосфорно­кислый аммоний, трехокись сурьмы, перхлорвинил и т. п.).

 

Свойства полимеров

Рассмотрим общие свойства некоторых распространенных полимерных материалов (табл. 11).

Термопласты

Полиэтилен – продукт полимеризации этилена, структура (–СН2–СН2–)n, один из самых распространенных полимеров, обладает достаточной прочностью, стойкостью к действию влаги, кислот, щелочей, хорошо обрабатывается, дешев. Хороший диэлектрик. Широко применяется для изготовления бытовых изделий, химической посуды, труб, используется как изоляционный материал в электротехнике.

Полипропилен – продукт полимеризации пропилена, структура (–С2Н4–СН2–)n. За счет бокового ответвления молекулы прочнее полиэтилена, более термостоек. Однако химически менее стоек, быстрее стареет.

Полистирол – полимер со структурой (–СН(С6Н5)–СН2–)n, линейная цепочка с присоединенным бензольным кольцом. За счет громоздкого ответвления получается еще большая прочность материала. К недостаткам следует отнести невысокую нагревостойкость и склонность к растрескиванию.

Политетрафторэтилен (фторопласт или тефлон) – полимер со структурой этилена, в котором атомы водорода заменены на атомы фтора (–СF2–СF2–)n. Прочность связи C–F очень велика 450 кДж/моль. В результате такого замещения получился молочно-белый, жирный на ощупь материал с замечательными свойствами. Он не горюч, не смачивается водой, химически чрезвычайно стоек, на него не действуют ни кислоты, ни щелочи, ни органические растворители. Его термостойкость рекордная для полимеров. Диэлектрические свойства фторопласта очень высоки и практически неизменны при нагреве и на высоких частотах. Его недостатком является холодная текучесть при механических нагрузках.

Поливинилхлорид – полимер со структурой (–СН2–СНCl–)n. За счет сильно полярной связи с хлором, полимер полярный, что значительно увеличивает прочность материала. Из-за наличия хлора практически негорюч. Его изоляционные свойства вполне удовлетворительны в низкочастотных полях.

Таблица 11.

Механические свойства полимеров

Материал sв, МПа tmax, oC
Термопласты
Полиэтилен 10-20  
Пилипропилен 26-38  
Полистирол 40-60  
Политетрафторэтилен (фторопласт) 20-40  
Поливинилхлорид 80-160  
Реактопласты
Фенолформальдегидные смолы 15-35  
Полиэфирные 40-70  
Эпоксидные 30-70  
Полимер с наполнителем
Гетинакс (фенолформ. смола + наполнитель бумага) 60-70  
Текстолит (х/б ткань) 70-100  
Стеклотекстолит (стеклоткань) 200-600 200-400 (3000)
Пенопласт (газ) r = 20-300 кг/м3

 

Реактопласты

Фенолформальдегидные смолы являются основой большого количества пластмасс, лаков и клеев. В результате нагрева смолы происходит химическая реакция, и получается полимер бакелит. Сам по себе он хрупок, поэтому его применяют с наполнителями. Из таких пластмасс изготавливают корпуса приборов, педали, рукоятки, коллекторы электродвигателей, ролики и пр.

Эпоксидные смолы затвердевают при реакции со специальными добавками, называемыми отвердителями. Для этого не требуется нагрева, поэтому они стали незаменимыми материалами в качестве компаундов, заливочных масс.

Полимеры с наполнителями

Полимеры с наполнителями являются композиционными материалами, которые подробнее мы рассмотрим в следующих разделах. Здесь же приведем свойства некоторых из них.

Гетинакс состоит из слоев бумаги, пропитанных и склеенных фенолформальдегидной смолой. Он обладает достаточной прочностью и хорошими электроизоляционными свойствами. Из него делают платы, панели, изоляционные прокладки, шайбы, каркасы катушек и др.

Текстолит состоит из слоев хлопчатобумажной ткани, пропитанных и склеенных смолой. Обладает большей прочностью, чем гетинакс. Применяется для изготовления тех же деталей. Кроме того из текстолита делают подшипники скольжения и бесшумные скоростные шестеренки для редукторов, коробок передач, амортизационных прокладок для поглощения вибраций.

Стеклотекстолит получается так же как текстолит, но в качестве наполнителя берется стеклоткань. Вследствие чего резко повышаются механические и электрические свойства, возрастает нагревостойкость, снижается влагопоглощение.

Пенопласт – важная разновидность пластмасс, получаемая путем вспенивания и затвердевания полимера. Таким образом, наполнителем является газ. Пенопласты являют самыми легкими конструкционными материалами, они радиопрозрачны, хорошие диэлектрики. Из них изготавливают обтекатели радиоантенн, тепло- и звуко- изоляционные перегородки в авиации, легкие конструкции в строительстве и упаковка в быту.



Поделиться:


Последнее изменение этой страницы: 2016-12-09; просмотров: 1584; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.45.162 (0.008 с.)