Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ми огу, специальность «фармация», вечернее↑ Стр 1 из 8Следующая ⇒ Содержание книги
Поиск на нашем сайте
Задания к лабораторному практикуму
по общей и неорганической химии
специальность «Фармация» вечернее отделение
МИ ОГУ, специальность «Фармация», вечернее Общая и неорганическая химия ТЕМАТИЧЕСКИЙ ПЛАН ЛЕКЦИЙ И ЛАБОРАТОРНЫХ ЗАНЯТИЙ (2013-2014 уч. год, 1 семестр)
Зав. кафедрой Юшкова Е.Н.
СОДЕРЖАНИЕ разделов ДИСЦИПЛИНЫ Введение Предмет, задачи и методы химии общей и неорганической, ее место в системе естественных наук и фармацевтического образования, значение для развития медицины и фармации. Основные законы, положения и понятия химии общей и неорганической. Эквивалент, фактор эквивалентности, молярная масса эквивалента, закон эквивалентов. Номенклатура основных классов неорганических веществ. Расчеты по химическим формулам и уравнениям. Техника безопасности и правила работы в лабораториях химического профиля. Обработка результатов наблюдений и измерений. Основные способы выражения концентраций растворов. Основные закономерности протекания химических процессов 1.1. Энергетика, направление и глубина протекания химических реакций. Основные понятия химической термодинамики. Поглощение и выделение различных видов энергии при химических превращениях. Теплота и работа. 1.2. Внутренняя энергия и энтальпия. Стандартные состояния веществ и стандартные изменения внутренней энергии и энтальпии. Теплоты химических реакций при постоянной температуре и давлении или объеме. Термохимические уравнения.
1.3. Закон Гесса. Расчеты изменения энтальпий химических реакций и физико-химических превращений (растворение веществ, диссоциация кислот и оснований) на основе закона Гесса. 1.4. Понятие об энтропии как мере неупорядоченности системы; уравнение Больцмана. 1.5. Энергия Гиббса и энергия Гельмгольца как критерий самопроизвольного протекания процесса и достижения состояния равновесия. Таблицы стандартных энергий Гиббса образования веществ. 1.6. Химическое равновесие. Обратимые и необратимые химические реакции и состояние химического равновесия. Качественная характеристика состояния химического равновесия. Смещение химического равновесия. Принцип Ле Шателье – Брауна. 1.7. Закон действующих масс (ЗДМ). Константа химического равновесия и ее связь со стандартным изменением энергии Гиббса и энергии Гельмгольца процесса. Определение направления протекания реакции в системе при данных условиях. 1.8. Зависимость энергии Гиббса процесса и константы равновесия от температуры.
Окислительно-восстановительные реакции 2.1. Электронная теория окислительно-восстановительных (ОВ) реакций. 2.2. Окислительно-восстановительные свойства элементов и их соединений в зависимости от положения элемента в Периодической системе элементов и степени окисления элементов в соединениях. Сопряженные пары окислитель – восстановитель. 2.3. Стандартное изменение энергии Гиббса и Гельмгольца окислительно-восстановительной реакции и стандартные окислительно-восстановительные потенциалы (электродные потенциалы). Определение направления протекания ОВ реакций. Влияние внешних условий на направление окислительно-восстановительных реакций и характер образующихся продуктов.
Учение о растворах 3.1. Основные определения: раствор, растворитель, растворенное вещество. Растворимость. Растворы газообразных, жидких и твердых веществ. Вода как один из наиболее распространенных растворителей. Роль водных растворов в жизнедеятельности организмов. Неводные растворители и растворы. 3.2. Процесс растворения как физико-химическое явление. Термодинамика процесса растворения. Растворы газов в жидкостях. Законы Генри, Дальтона, И.М.Сеченова. 3.3. Растворы твердых веществ в жидкостях. Понятие о коллигативных свойствах растворов. Осмос. Закон Вант – Гоффа об осмотическом давлении. Роль осмоса в биосистемах. Теория электролитической диссоциации (Аррениус С., Каблуков И.А.). 3.4. Теория растворов сильных электролитов. Ионная сила растворов. Активность ионов и коэффициент активности. 3.5. Равновесие между раствором и осадком малорастворимого сильного электролита. Произведение растворимости. Условия растворения и образования осадков. 3.6. Протолитические равновесия в воде. Ионное произведение воды. Водородный показатель. рН растворов сильных кислот и оснований. 3.7. Растворы слабых электролитов. Применение ЗДМ к процессам ионизации слабых электролитов. Константа ионизации (диссоциации). Ступенчатый характер ионизации. 3.8. Теории кислот и оснований (Аррениуса, Бренстеда–Лоури, Льюиса). Константы кислотности и основности. Процессы ионизации, гидролиза, нейтрализации с точки зрения различных теорий кислот и оснований. рН растворов слабых кислот, оснований, гидролизующихся солей.
Амфотерные электролиты (амфолиты). Роль ионных, в том числе кислотно-основных, взаимодействий при метаболизме лекарств, в анализе лекарственных препаратов, при приготовлении лекарственных форм. Химическая совместимость и несовместимость лекарственных веществ.
Строение вещества 4.1. Основные этапы развития представлений о существовании и строении атомов. Электронные оболочки атомов и периодический закон Д.И. Менделеева. Спектры атомов как источник информации об их строении. Квантово-механическая модель строения атомов. Электронные формулы и электронно-структурные схемы атомов. Правило Гунда. Принцип Паули. Периодический закон (ПЗ) Д.И. Менделеева и его трактовка на основе квантово-механической теории строения атомов. 4.2. Структура Периодической системы элементов (ПСЭ): периоды, группы, семейства, s-, p-, d-, f-классификация элементов (блоки). Длиннопериодный и короткопериодный варианты ПСЭ. Периодический характер изменения свойств атомов элементов: радиус, энергия ионизации, энергия сродства к электрону, относительная электроотрицательность (ОЭО). Определяющая роль внешних электронных оболочек для химических свойств элементов. Периодический характер изменения свойств простых веществ, оксидов и водородных соединений элементов. 4.3. Природа химической связи и строение химических соединений Типы химических связей и физико-химические свойства соединений с ковалентной, ионной и металлической связью. Экспериментальные характеристики связей: энергия связи, длина, полярность, эффективные заряды атомов. Кривая потенциальной энергии молекулы водорода (двухэлектронная химическая связь по Гайтлеру – Лондону на примере молекулы водорода). 4.4. Основы метода валентных связей (МВС). Механизм образования ковалентной связи. Насыщаемость ковалентной связи. Направленность ковалентной связи. Сигма и пи-связи, их образование при перекрывании s-, p- и d-орбиталей. Кратность связей в методе валентных связей. Поляризуемость и полярность ковалентной связи. Гибридизация атомных орбиталей. Устойчивость гибридных состояний различных атомов. Пространственное расположение атомов в молекулах. Характерные структуры трех-, четырех-, пяти- и шестиатомных молекул. 4.5. Описание молекул методом молекулярных орбиталей (ММО). Связывающие, разрыхляющие и несвязывающие МО, их энергия и форма. Энергические диаграммы МО. Заполнение МО электронами в молекулах, образованных атомами и ионами элементов 1-го и 2-го периодов ПСЭ. Кратность связи в ММО.
4.6. Межмолекулярные взаимодействия и их природа. Энергия межмолекулярного взаимодействия. Ориентационное, индукционное и дисперсионное взаимодействие. Водородная связь и ее разновидности. Биологическая роль водородной связи. Молекулярные комплексы и их роль в метаболических процессах.
Комплексные соединения 5.1. Современное содержание понятия «комплексные соединения» (КС). Структура КС: центральный атом, лиганды, комплексный ион, внутренняя и внешняя сфера, координационное число центрального атома, дентатность лигандов. 5.2. Способность атомов различных элементов к комплексообразованию. Природа химической связи в КС. Теория валентных связей. Понятие о теории поля лигандов. Объяснение окраски КС переходных металлов, их магнитных свойств. Образование и диссоциация КС в растворах, константы образования и нестойкости комплексов. 5.3. Классификация и номенклатура КС. Комплексные кислоты, основания, соли. Внутрикомплексные соединения. Пи-комплексы. Карбонилы металлов. Хелатные и макроциклические КС. 5.4. Биологическая роль КС. Металлоферменты, понятие о строении их активных центров. Химические основы применения КС в фармации и медицине.
Химия элементов S-элементы 6.1.1. Водород 6.1.1.1. Общая характеристика. Особенности положения в ПСЭ, реакции с кислородом, галогенами, металлами, оксидами. 6.1.1.2. Вода как важнейшее соединение водорода, ее физические и химические свойства. Аквокомплексы и кристаллогидраты. Дистиллированная и апирогенная вода, получение и применение в фармации. Природные и минеральные воды. 6.1.1.3. Характеристика и реакционная способность соединений водорода с другими распространенными элементами: кислородом, азотом, углеродом, серой. Особенности поведения водорода в соединениях с сильно- и слабополярными связями. Ион водорода, ион оксония, ион аммония. 6.1.2. s-элементы – металлы 6.1.2.1. Общая характеристика. Изменение свойств элементов IIA подгруппы в сравнении с IA. Характеристики катионов. Ионыs–металлов в водных растворах; энергия гидратации ионов. 6.1.2.2. Взаимодействие металлов с кислородом, образование оксидов, пероксидов, гипероксидов (супероксидов, надпероксидов). Взаимодействие с водой этих соединений. Гидроксиды щелочных и щелочноземельных металлов; амфотерность гидроксида бериллия. Гидриды щелочных и щелочноземельных металлов и их восстановительные свойства. 6.1.2.3. Взаимодействие щелочных и щелочноземельных металлов с водой и кислотами. Соли щелочных и щелочноземельных металлов: сульфаты, галогениды, карбонаты, фосфаты. 6.1.2.4. Ионы щелочных и щелочноземельных металлов как комплексообразователи. Ионофоры и их роль в мембранном переносе калия и натрия. Ионы магния и кальция как комплексообразователи. 6.1.2.5. Биологическая роль s-элементов-металлов в минеральном балансе организма. Макро- и микро-s-элементы. Поступление в организм с водой. Жесткость воды, единицы ее измерения, пределы, влияние на живые организмы и протекание реакций в водных растворах, методы устранения жесткости. Соединения кальция в костной ткани, сходство ионов кальция и стронция, изоморфное замещение (проблема стронция-90).
6.1.2.6. Токсичность соединений бериллия. Химические основы применения соединений лития, натрия, калия, магния, кальция, бария в медицине и в фармации.
D-элементы 6.2.1. Общая характеристика d-элементов. d-Элементы III-V групп ПСЭ. 6.2.1.1. Общая характеристика d-элементов (переходных элементов). Характерные особенности d-элементов: переменные степени окисления, образование комплексов. Вторичная периодичность в семействах d-элементов. Лантаноидное сжатие и повышенное сходство d-элементов V и VI периодов. 6.2.1.2. d–Элементы III группы. Общая характеристика, сходство и отличие от s–элементов II группы. f-элементы как аналоги d-элементов III группы; сходство и отличие на примере церия. 6.2.1.3. d–Элементы IV и V групп. Общая характеристика. Химические основы применения титана, ниобия и тантала в хирургии, титана диоксида и аммония метаванадата в фармации.
6.2.2. d–Элементы VI группы 6.2.2.1. Общая характеристика группы. 6.2.2.2. Хром. Общая характеристика. Простое вещество и его химическая активность, способность к комплексообразованию. Хром(II), кислотно-основная (КО) и окислительно-восстановительная (ОВ) характеристики соединений. Xpoм(III), кислотно-основная (КО) и окислительно-восстановительная (ОВ) характеристики соединений, способность к комплексообразованию. Соединения хрома(VI) – оксид и хромовые кислоты, хроматы и дихроматы, КО и ОВ характеристика. Окислительные свойства хроматов и дихроматов в зависимости от рН среды; окисление органических соединений (спиртов). Пероксосоединения xpoмa(VI). Общие закономерности КО и ОВ свойств соединений d-элементов при переходе от низших степеней окисления к высшим на примере соединений хрома. 6.2.2.3. Молибден и вольфрам, общая характеристика, способность к образованию изополи- и гетерополикислот; сравнительная окислительно-восстановительная характеристика соединений молибдена и вольфрама по отношению к соединениям хрома. 6.2.2.4. Биологическое значение d-элементов VI группы. Химические основы применения соединений хрома, молибдена и вольфрама в фармации (фармацевтическом анализе).
6.2.3. d–Элементы VII группы 6.2.3.1. Общая характеристика группы. 6.2.3.2. Марганец. Общая характеристика. Химическая активность простого вещества. Способность к комплексообразованию (карбонилы марганца). Марганец(II) и марганец(IV): КО и ОВ характеристика соединений, способность к комплексообразованию. Марганец(IV) оксид: КО и ОВ свойства, влияние рН среды на ОВ свойства. Соединения марганца(VI): манганаты, их образование, термическая устойчивость, диспропорционирование в растворе и условия стабилизации. Соединения марганца(VII): оксид, марганцовая кислота, перманганаты, КО и ОВ свойства, продукты восстановления перманганатов при различных значениях рН, окисление органических соединений, термическое разложение. Химические основы применения калия перманганата и его раствора как антисептического средства и в фармацевтическом анализе.
6.2.4. d–Элементы VIII группы 6.2.4.1. Общая характеристика группы. Деление d–элементов VIII группы на элементы семейства железа и платиновые металлы. 6.2.4.2. Общая характеристика элементов семейства железа. 6.2.4.3. Железо. Химическая активность простого вещества, способность к комплексообразованию. Соединения железа(II) и железа(III): КО и OВ характеристика, способность к комплексообразованию. Комплексные соединения железа(II) и железа(III) с цианид- и тиоцианатионами. Гемоглобин и железосодержащие ферменты, химическая сущность их действия. Железо(VI). Ферраты, получение и окислительные свойства. Химические основы применения железа и железосодержащих препаратов в медицине и фармации. 6.2.4.4. Кобальт и никель. Химическая активность простых веществ в сравнении с железом. Соединения кобальта(II) и кобальта(III), никеля(II); КО и OВ характеристика, способность к комплексообразованию. Никель и кобальт как микроэлементы. Химические основы применения соединений кобальта и никеля в медицине и фармации. 6.2.4.5. Общая характеристика элементов семейства платины.
6.2.5. d–Элементы I группы 6.2.5.1. Общая характеристика группы. Физические и химические свойства простых веществ. 6.2.5.2. Соединения меди(I) и меди(II), их КО и OВ характеристика, способность к комплексообразованию. Комплексные соединения меди(II) с аммиаком, аминокислотами, многоатомными спиртами. Комплексный характер медьсодержащих ферментов и химизм их действия в метаболических реакциях. Природа окраски соединений меди. Химические основы применения соединений меди в медицине и фармации. 6.2.5.3. Соединения серебра, их КО и OВ характеристики (бактерицидные свойства иона серебра). Способность к комплексообразованию, комплексные соединения серебра с галогенидами, аммиаком, тиосульфатами. Химические основы применения соединений серебра в качестве лечебных препаратов, в фармацевтическом анализе. 6.2.5.4. Золото. Соединения золота(I) и золота(III), их КО и OВ характеристика, способность к комплексообразованию. Химические основы применения в медицине и фармации золота и его соединений.
6.2.6. d–Элементы II группы 6.2.6.1. Общая характеристика группы. 6.2.6.2. Цинк. Общая характеристика, химическая активность простого вещества; КО и OВ характеристика соединений цинка. Комплексные соединения цинка. Комплексная природа цинксодержащих ферментов и химизм их действия. Химические основы применения в медицине и в фармации соединений цинка. Кадмий и его соединения в сравнении с аналогичными соединениями цинка. 6.2.6.3. Ртуть. Общая характеристика, отличительные от цинка и кадмия свойства: пониженная химическая активность простого вещества, ковалентность образуемых связей с мягкими лигандами, образование связи между атомами ртути. Окисление ртути серой и азотной кислотой. Соединения ртути(I) и ртути(II), их КО и OВ характеристика, способность ртути(I) и ртути(II) к комплексообразованию. Химизм токсического действия соединений кадмия и ртути. Химические основы применения соединений ртути в медицине и фармации.
Р-ЭЛЕМЕНТЫ 6.3.1. p–Элементы III группы 6.3.1.1. Общая характеристика группы. Электронный дефицит и его влияние на свойства элементов и их соединений. Изменение устойчивости соединений со степенями окисления +3 и +1 в группе p–элементов III группы. 6.3.1.1. Бор. Общая характеристика. Простые вещества и их химическая активность. Бориды. Соединения с водородом (бораны), особенности стереохимии и природы связи. Гидридобораты. Галиды бора, гидролиз и комплексообразование. Борный ангидрид и борная кислота, равновесие в водном растворе. Бораты – производные различных мономерных и полимерных борных кислот. Тетраборат натрия. Эфиры борной кислоты. Качественная реакция на бор и ее использование в фармацевтическом анализе. Биологическая роль бора. Антисептические свойства борной кислоты и ее солей. 6.3.1.1. Алюминий. Общая характеристика. Простое вещество и его химическая активность. Разновидности оксида алюминия. Применение в медицине. Амфотерность гидроксида. Алюминаты. Ион алюминия как комплексообразователь. Безводные соли алюминия и кристаллогидраты. Особенности строения. Галиды. Гидрид алюминия и аланаты. Квасцы. Физико-химические основы применения алюминия в медицине и фармации.
6.3.2. р–Элементы IV группы 6.3.2.1. Общая характеристика группы. 6.3.2.2. Общая характеристика углерода. Аллотропические модификации углерода. Типы гибридизации атома углерода и строение углеродосодержащих молекул. Углерод как основа всех органических молекул. Физические и химические свойства простых веществ. Активированный уголь как адсорбент. Углерод в отрицательных степенях окисления. Карбиды активных металлов и соответствующие им углеводороды. Углерод(II). Оксид углерода(II), его КО и OВ характеристика, свойства как лиганда, химические основы его токсичности. Цианистоводородная кислота, простые и комплексные цианиды. Химические основы токсичности цианидов. Соединения углерода(IV). Оксид углерода(IV), стереохимия и природа связи, равновесия в водном растворе. Угольная кислота, карбонаты и гидрокарбонаты, гидролиз и термохимическое разложение. Соединения углерода с галогенами и серой. Четыреххлористый углерод, фосген, фреоны, сероуглерод и тиокарбонаты. Цианаты и тиоцианаты. Физические и химические свойства, применение. Биологическая роль углерода. Химические основы использования неорганических соединений углерода в медицине и фармации. 6.3.2.3. Кремний. Общая характеристика. Основное отличие от углерода: отсутствие пи-связи в соединениях. Силициды. Соединения с водородом (силаны), окисление и гидролиз. Тетрафторид и тетрахлорид кремния, гидролиз. Гексафторосиликаты. Кислородные соединения. Оксид кремния(IV). Силикагель. Кремневая кислота. Силикаты. Растворимость и гидролиз. Природные силикаты и алюмосиликаты, цеолиты. Кремнийорганические соединений. Силиконы и силоксаны. Использование в медицине соединений кремния. 6.3.2.4. Элементы подгруппы германия. Общая характеристика. Устойчивость водородных соединений. Соединения с галогенами типа ЭГ2 и ЭГ4, поведение в водных растворах. Оловохлористоводородная кислота. Оксиды. Оксид свинца(IV) как сильный окислитель. Амфотерность гидроксидов. Растворимые и нерастворимые соли олова и свинца. OВ реакции в растворах. Химизм токсического действия соединений свинца. Применение в медицине свинецсодержащих препаратов (свинца(II) ацетат, свинца(II) оксид). Химические основы использования соединений олова и свинца в анализе фармпрепаратов.
6.3.3. p–Элементы V группы 6.3.3.1. Общая характеристика группы. Азот, фосфор, мышьяк в организме, их биологическая роль. 6.3.3.2. Азот. Общая характеристика. Многообразие соединений с различными степенями окисления азота. Молекула азота как лиганд. Соединения с отрицательными степенями окисления. Нитриды. Аммиак, КО и OВ характеристика, реакции замещения. Амиды. Аммиакаты. Свойства аминокислот как производных аммиака. Ион аммония и его соли, кислотные свойства, термическое разложение. Гидразин и гидроксиламин. КО и OВ характеристика. Азотистоводородная кислота и азиды. Соединения азота в положительных степенях окисления. Оксиды. Стереохимия и природа связи. Способы получения. КО и ОВ свойства. Азотистая кислота и нитриты. КО и ОВ свойства. Азотная кислота и нитраты. КО и ОВ характеристика. 6.3.3.3. Фосфор. Общая характеристика. Аллотропические модификации фосфора, их химическая активность. Фосфиды. Фосфин. Сравнение с соответствующими соединениями азота. Соединения фосфора в положительных степенях окисления. Галиды, их гидролиз. Оксиды: стереохимия и природа связи, взаимодействие с водой и спиртами. Фосфорноватистая (гипофосфористая) и фосфористая кислоты, строение молекул, КО и ОВ свойства. Дифосфорная (пирофосфорная) кислота. Изополи- и гетерополифосфорные кислоты. Метафосфорные кислоты, сравнение с азотной кислотой. Производные фосфорной кислоты в живых организмах. 6.3.3.4. Элементы подгруппы мышьяка. Общая характеристика. Водородные соединения мышьяка, сурьмы и висмута в сравнении с аммиаком и фосфином. Определение мышьяка по методу Марша. Соединения мышьяка, сурьмы и висмута в положительных степенях окисления. Галиды и изменение их свойств в группе (азот – висмут). Оксиды и гидроксиды Э(III) и Э(V); их КО и OВ характеристики. Арсениты и арсенаты, их КО и OВ свойства. Соли катионов сурьмы(III) и висмута(III), их гидролиз. Сурьмяная кислота и ее соли. Висмутаты. Неустойчивость соединений висмута(V). 6.3.3.5. Понятие о химических основах применения в медицине и фармации аммиака, закиси азота, нитрита и нитрата натрия, оксидов и солей мышьяка, сурьмы и висмута.
6.3.4. р–Элементы VI группы 6.3.4.1. Общая характеристика группы. 6.3.4.2. Кислород. Общая характеристика. Роль кислорода как одного из наиболее распространенных элементов и составной части большинства неорганических соединений. Особенности электронной структуры молекулы кислорода. Химическая активность кислорода. Молекула О2 в качестве лиганда в оксигемоглобине. Озон, стереохимия и природа связей. Химическая активность в сравнении с кислородом (реакция с растворами иодидов). Классификация кислородных соединений и их общие свойства (в том числе бинарные соединения: супероксиды (гипероксиды, надпероксиды), пероксиды, оксиды, озониды). Водорода пероксид Н2О2, его КО и ОВ характеристика, применение в медицине. Соединения кислорода с фтором. Биологическая роль кислорода. Химические основы применения кислорода и озона, а также соединений кислорода в медицине и фармации. 6.3.4.3. Сера. Общая характеристика. Соединения серы в отрицательных степенях окисления. Сероводород, его КО и ОВ свойства. Сульфиды металлов и неметаллов, их растворимость в воде и гидролиз. Полисульфиды, КО и ОВ характеристика, устойчивость. Соединения серы(IV): оксид, хлорид, хлористый тионил, сернистая кислота, сульфиты и гидросульфиты. Их КО и ОВ свойства. Восстановление сульфитов до дитионистой кислоты и дитионитов. Взаимодействие сульфитов с серой с образованием тиосульфатов. Свойства тиосульфатов: реакция с кислотами, окислителями (в том числе с иодом), катионами–комплексообразователями. Политионаты, особенности их строения и свойства. Соединения cepы(VI): оксид, гексафторид, сульфонилхлорид, сульфурилхлорид, серная кислота и ее производные – сульфаты, КО и ОВ свойства. Олеум. Пиросерная кислота. Пероксодисерные кислоты и соли. Окислительные свойства пероксосульфатов. Биологическая роль серы (сульфгидрильные группы и дисульфидные мостики в белках). Химические основы применения серы и ее соединений в медицине, фармации, фармацевтическом анализе. 6.3.4.4. Селен и теллур. Общая характеристика. КО и ОВ свойства водородных соединений и их солей. Оксиды и кислоты, их КО и ОВ свойства (в сравнении с соединениями серы). Биологическая роль селена.
6.3.5. р–Элементы VII группы (галогены) 6.3.5.1. Общая характеристика группы. Особые свойства фтора как наиболее электроотрицательного элемента. Простые вещества, их химическая активность. 6.3.5.2. Соединения галогенов с водородом. Растворимость в воде; КО и ОВ свойства. Ионные и ковалентные галиды, их отношение к действию воды, окислителей и восстановителей. Способность фторид–иона замещать кислород (например, в соединениях кремния). Галогенид–ионы как лиганды в комплексных соединениях. 6.3.5.3. Галогены в положительных степенях окисления. Соединения с кислородом и друг с другом. Взаимодействие галогенов с водой и водными растворами щелочей. Кислородные кислоты хлора и их соли, стереохимия и природа связей, устойчивость в свободном состоянии и в растворах, изменение КО и ОВ свойств в зависимости от степени окисления галогена. Хлорная известь, хлораты, броматы и йодаты и их свойства. Биологическая роль фтора, хлора, брома и йода. 6.3.5.4. Понятие о химизме бактерицидного действия хлора и йода. Применение в медицине, санитарии и фармации хлорной извести, хлорной воды, препаратов активного хлора, йода, а также соляной кислоты, фторидов, хлоридов, бромидов и йодидов.
6.3.6. р–Элементы VIII группы (благородные газы) Общая характеристика. Физические и химические свойства благородных газов. Соединения благородных газов. Применение благородных газов в медицине.
Учебно-методическое и информационное обеспечение дисциплины: а) основная литература 1. Харитонов Ю.Я., Слонская Т.К. Электронная библиотека. Химия: общая и неорганическая. М.: «Русский врач», 2004 г. 2. Ершов Ю.А., Попков В.А., Берлянд А.С., Книжник А.3. Общая химия. Биофизическая химия. Химия биогенных элементов: Учебник для студентов медицинских специальностей высших учебных заведений. М.: Высшая школа, 2007. 3. Ахметов Н.С. Общая и неорганическая химия. М.: Высшая школа, 1999. б) дополнительная литература 1. Попков В.А., Пузаков С.А. Общая химия. М.: ГЭОТАР – Медиа, 2007. 2. Третьяков Ю.Д., Л.И. Мартыненко, А.Н. Григорьев, А.Ю. Цивадзе. Неорганическая химия. Химия элементов: Учебник для вузов. В 2 книгах. М., Химия, 2001. 3. Хьюз М. Неорганическая химия биологических процессов. М.: Мир, 1983 4. Ершов Ю.А., Плетенева Т.В. Механизмы токсического действия неорганических соединений. М.: Медицина, 1989 5. Журнал неорганической химии. Ежемесячное издание Российской академии наук 6. Журнал общей химии. Ежемесячное издание Российской академии наук 7. Координационная химия. Ежемесячное издание Российской академии наук
Задание к занятию № 1
Проверка остаточных знаний за школьный курс. Основные законы и понятия неорганической химии. Способы выражения концентрации растворов. Лабораторная работа «Правила по технике безопасности при работе в химической лаборатории. Лабораторное оборудование и приемы работы с ним. Ошибки измерений». Вопросы для самоподготовки: Повторить следующие вопросы школьной программы: 1. Физические и химические процессы. Чистые вещества и смеси. Простые и сложные вещества. 2. Строение атома. Электронные конфигурации атомов и ионов. Степень окисления. 3. Химические формулы веществ. Химические уравнения. 4. Электролитическая диссоциация. Гидролиз солей. Ионные реакции. 5. Способы выражения концентрации растворов. 6. Качественные реакции.
На первое занятие принести:
Задание к занятию № 2 I. Теория. Основные закономерности протекания химических процессов. Раздел 1 программы. II. Решить задачи (смотри приложение). 1. Вычислить тепловой эффект, стандартную энергию Гиббса и стандартную энтропию реакции образования глюкозы по реакции: 6СО2 + 6Н2О = С6Н12О6 + 6О2 (с.у.). Определите, при каких условиях она возможна? 2. Рассчитайте ∆S° реакции АТФ + Н2О = АДФ + Ф при 310 К. Для этой реакции ∆G° и ∆Н° составляют -30,9 и -20,08 кДж/моль, соответственно. 3. Напишите выражение констант равновесия для реакций: CH3COOH(р) ↔ H+(р)+ CH3COO-(р) H2O(ж) + CO2(г) ↔ H2CO3(р) 2NO(г) + Cl2(г) ↔ 2NOCl2(г) 4. В каком направлении сместится равновесие при добавлении к раствору щелочи: СО32- + H2O ↔ НСО3- + ОН-. IV. Самостоятельная работа №1. Способы выражения концентрации растворов. Приложение к п.II. Приложение к п.III. Лабораторная работа № 2 Ход работы. Лабораторная работа № 3 Приложение к п.IV Решить «0 вариант» в тетради (клетка 24 стр.).
Самостоятельная работа №1. Способы выражения концентрации растворов Вариант 0 1. Рассчитайте массу навески натрия гидроксида, необходимую для приготовления 230 мл раствора с концентрацией 0,6 моль/л
2. Какой объем раствора соляной кислоты с массовой долей 22% (ρ=1,10 г/мл) необходим для приготовления 402 мл раствора концентрацией 0,15 моль/л?
3. На нейтрализацию 20 мл раствора азотной кислоты израсходовано 45 мл раствора КОН с молярной концентрацией эквивалента, равной 0,10 моль/л. Рассчитайте С (1/z HNO3) в растворе.
4 Вычислить фактор эквивалентности гидроксида кальция в реакции полной нейтрализации. 5 Единица измерения моляльной концентрации. 6 Продолжить определение. Молярная концентрация эквивалента – 7 Напишите формулу, по которой можно вычислить массовую долю растворенного вещества. 8 По формуле b(Х) = ν(Х) /mр-ля рассчитывают ______________ концентрацию. Задание к занятию №3. I. Теория: Окислительно-восстановительные реакции (раздел 2 программы). II. Упражнения: 1 Выполнить упражнения: 1. Определите степень окисления всех элементов в соединениях: H2О2, КО2, OF2, Аl2O3, СаСО3, СО, НСОН, СО2, СН4, СН3—СН2—ОН, СаН2, Na2S, FeS2. 2. Какие из указанных соединений являются только окислителями, какие - только восстановителями, а какие проявляют двойственный характер: K2Cr2O7, H2S, Na2SO4, Na2SO3, KNO2, KNO3, PH3. 3. Подберите коэффициенты в уравнениях окислительно-восстановительных реакций методом полуреакций. Определите принадлежность уравнения к одной из трех групп окислительно-восстановительных реакций. Вычислите факторы эквивалентности и молярные массы эквивалентов окислителей и восстановителей: KMnO4 + NaNO2 + H2SО4 ® MnSО4 + NaNO3 + K2SО4 + H2O 4. Определите направление протекания реакции в стандартных условиях: 2HgCl2 + SnCl2 <====> Hg2Cl2 + SnCl4 если стандартные окислительно-восстановительные потенциалы равны: j°(Hg2+/Hg22+)=0,92В; j° (Sn4+/Sn2+) =0,15В. III. Лабораторная работа «Окислительно-восстановительные процессы» (смотри ниже). IV. Решить «0» вариант самостоятельной работы №2 (в тетради для «0» -х вариантов). Лабораторная работа. «Окислительно-восстановительные процессы. Восстановление иона MnO4– в различных средах». В три отд
|
||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 397; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.80.68 (0.018 с.) |