ТОП 10:

Решение задач «игр с природой» с помощью метода Лапласа, по критериям Вальда, Сэвиджа и Гурвица.



Идея метода Лапласа

Предполагается, что функция φ(x) имеет единственный глобальный максимум в x0. Тогда значение ϕ(x0) будет большим, чем любое значение φ(x) в рассматриваемом промежутке интегрирования. Cледовательно для оценки этого интеграла можно ограничиться рассмотрением функции φ(x) лишь в небольшой окрестности глобального максимума. Для этого функции φ(x) и Φ(x) раскладывают в ряд Тейлора в окрестности этой точки.

Любую хозяйственную деятельность человека можно рассматривать как игру с природой. В широком смысле под "природой" понимается совокупность неопределенных факторов; влияющих на эффективность принимаемых решений. Безразличие природы к игре (выигрышу) к возможность получения экономистом (статистиком) дополнительной информации о ее состоянии отличают игру экономиста с природой от обычной матричной игры, в которой принимают участие два сознательных игрока.

Данный тип задач относится к задачам принятия решений в условиях неопределенности.

Максиминный критерий Вальда

С позиций данного критерия природа рассматривается как агрессивно настроенный и сознательно действующий противник типа тех, которые противодействуют в стратегических играх (см. гл.2). Выбирается решение, для которого достигается значение

 

.

 

Для платежной матрицы А (1) нетрудно рассчитать:

 

для первой стратегии (i = 1) ;

для второй стратегии (i=2) ;

для третьей стратегии (i=3) .

 

Тогда , что соответствует второй стратегии A2 игрока 1.

В соответствии с критерием Вальда из всех самых неудачных результатов выбирается лучший (W = 3). Это перестраховочная позиция крайнего пессимизма, рассчитанная на худший случай.

Такая стратегия приемлема, например, когда игрок не столь заинтересован в крупной удаче, но хочет себя застраховать от неожиданных проигрышей. Выбор такой стратегии определяется отношением игрока к риску.

Критерий минимаксного риска Сэвиджа

Выбор стратегии аналогичен выбору стратегии по принципу Вальда с тем отличием, что игрок руководствуется не матрицей выигрышей А (1), а матрицей рисков R (2):

 

 

Для матрицы R (2) нетрудно рассчитать:

для первой стратегии (i=1) ;

для второй стратегии (i=2) ;

для третьей стратегии (i=3) .

Минимально возможный из самых крупных рисков, равный 4, достигается при использовании первой стратегии А1.

Критерий пессимизма-оптимизма Гурвица

Этот критерий при выборе решения рекомендует руководствоваться некоторым средним результатом, характеризующим состояние между крайним пессимизмом и безудержным оптимизмом. Согласно этому критерию стратегия в матрице А выбирается в соответствии со значением

 

 

При p = 0 критерий Гурвица совпадает с максимаксным критерием, а при р = 1 - с критерием Вальда. Покажем процедуру применения данного критерия для матрицы А (1) при р = 0,5:

для первой стратегии

 

 

для второй стратегии

 

 

для третьей стратегии

 

 

Тогда , т.е. оптимальной является вторая стратегия А2.

Применительно к матрице рисков R критерий пессимизма-оптимизма Гурвица имеет вид:

 

 

При р = 0 выбор стратегии игрока 1 осуществляется по условию наименьшего из всех возможных рисков ( ); при р = 1 - по критерию минимаксного риска Сэвиджа.

В случае, когда по принятому критерию рекомендуется к использованию несколько стратегий, выбор между ними может делаться по дополнительному критерию, например в расчет могут приниматься средние квадратичные отклонения от средних выигрышей при каждой стратегии. Еще раз подчеркнем, что здесь стандартного подхода нет. Выбор может зависеть от склонности к риску ЛПР.

В заключение приведем результаты применения рассмотренных выше критериев на примере следующей матрицы выигрышей:

 

Модели управления запасами.

Задача управления запасами возникает, когда необходимо создать запас материальных ресурсов или предметов потребления с целью удовлетворения спроса на заданном интервале времени. В любой задаче управления запасами требуется определить количество заказываемой продукции и сроки размещения заказов.

Спрос можно удовлетворить:

? путем однократного создания запаса на весь рассматриваемый период времени

? посредством создания запаса для каждой единицы времени этого периода.

Эти два случая соответствуют избыточному запасу (по отношению к единице времени) и недостаточному запасу (по отношению к полному периоду времени).

При избыточном запасе требуются более высокие удельные (отнесенные к единице времени) капитальные вложения, но дефицит возникает реже и частота размещения заказов меньше. При недостаточном запасе удельные капитальные вложения снижаются, но частота размещения заказов и риск дефицита возрастают.

Для любого из этих двух крайних случаев характерны значительные экономические потери. Таким образом, решения относительно размера заказа и момента его размещения могут основываться на минимизации соответствующей функции общих затрат, включающих затраты, обусловленные потерями от избыточного запаса и дефицита.

Обобщенная модель управления запасами

Любая модель управления запасами, в конечном счете, должна дать ответ на два вопроса:

1. Какое количество продукции заказывать?

2. Когда заказывать?

Ответ на первый вопрос выражается через размер заказа, определяющего оптимальное количество ресурсов, которое необходимо поставлять всякий раз, когда происходит размещение заказа. В зависимости от рассматриваемой ситуации размер заказа может меняться во времени.

Ответ на второй вопрос зависит от типа системы управления запасами. Если система предусматривает периодический контроль состояния запасами через равные промежутки времени (еженедельно или ежемесячно), момент поступления нового заказа обычно совпадает с началом каждого интервала времени. Если же в системе предусмотрен непрерывный контроль состояния запаса, точка заказа обычно определяется уровнем запаса, при котором необходимо размещать новый заказ.

Таким образом, решение обобщенной задачи управления запасами определяется следующим образом:

1. В случае периодического контроля состояния запаса следует обеспечивать поставку нового количества ресурсов в объеме размера заказа через равные промежутки времени.

2. В случае непрерывного контроля состояния запаса необходимо размещать новый заказ в размере объема запаса, когда его уровень достигает точки заказа.

Размер и точка заказа обычно определяются из условий минимизации суммарных затрат системы управления запасами, которые можно выразить в виде функции этих двух переменных.

Затраты на приобретение становятся важным фактором, когда цена единицы продукции зависит от размера заказа, что обычно выражается в виде оптовых скидок в тех случаях, когда цена единицы продукции убывает с возрастанием размера заказа.

Затраты на оформление заказа представляют собой постоянные расходы, связанные с его размещением. При удовлетворении спроса в течение заданного периода времени путем размещения более мелких заказов (более часто) затраты возрастают по сравнению со случаем, когда спрос удовлетворяется посредством размещения более крупных заказов (и, следовательно реже).

Затраты на хранение запаса, которые представляют собой расходы на содержание запаса на складе (затраты на переработку, амортизационные расходы, эксплуатационные расходы) обычно возрастают с увеличением уровня запаса.

Потери от дефицита представляют собой расходы, обусловленные отсутствием запаса необходимой продукции.

Оптимальный уровень запаса соответствует минимуму суммарных затрат.

Модель управления запасами не обязательно должна включать все четыре вида затрат, так как некоторые из них могут быть незначительными, а иногда учет всех видов затрат чрезмерно усложняет функцию суммарных затрат. На практике какую-либо компоненту затрат можно не учитывать при условии, что она не составляет существенную часть общих затрат.







Последнее изменение этой страницы: 2016-08-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.232.51.69 (0.008 с.)