Силовые характеристики движения тела 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Силовые характеристики движения тела



Изменение скорости движения тел происходит под действием сил. Другими словами сила является не причиной движения, а причиной изменения движения. Силовые характеристики раскрывают связь действия силы с изменением движений. К силовым характеристикам при поступательном движении относятся:

· сила;

· импульс силы;

· импульс тела (количество движения).

Сила (F) – мера механического действия одного тела на другое. Сила определяется формулой: F =m a, где m – масса тела; a ускорение.

Импульс силы (S) – мера воздействия силы на тело за промежуток времени. Эта механическая характеристика равна произведению силы на промежуток времени. Импульс силы характеризует площадь под кривой «время – сила» (рис. 3.2).

 

Рис. 3.2. Импульс силы характеризует площадь под кривой «время-сила» (Р. Энока, 1998)

 

Значение импульса силы отталкивания не зависит от формы кривой «время-сила», а определяется только площадью под кривой. Зарегистрировать силу давления на опору позволяет методика тензодинамометрии. При этом характер кривой давления на опору зависит от уровня развития скоростно-силовых качеств спортсмена. Спортсмен, обладающий высоким уровнем развития скоростно-силовых качеств мышц ног способен развить высокий уровень силы за короткий промежуток времени.

Импульс тела (количество движения, Q) – векторная величина, характеризующая его способность передаваться другому телу. Импульс тела определяется по формуле: Q =m V.

Импульс тела имеет то же направление, что и скорость. Если тело покоится, его импульс равен нулю. При взаимодействии тел их импульсы могут быть переданы от одного тела к другому. Например, в результате взаимодействия тела человека с опорой изменяется импульс тела (количество движения тела). Чем больший импульс приобретает тело человека в результате взаимодействия с опорой, тем выше или дальше будет прыжок.

К силовым характеристикам при вращательном движении относятся:

· момент силы;

· импульс момента силы;

· кинетический момент.

Момент силы (М) – векторная величина, мера механического действия одного тела на другое при вращательном движении. Момент силы определяется по формуле: M = F h, где h – плечо силы.

Плечо силы – перпендикуляр, опущенный из оси вращения на линию действия силы.

Костные звенья в организме человека представляют собой рычаги. При этом результат действия мышцы определяется не столько развиваемой ею силой, сколько моментом силы. Особенностью строения опорно-двигательного аппарата человека является небольшие значения плеч сил тяги мышц. В то же время внешняя сила, например, сила тяжести, имеет большое плечо (рис. 3.3). Поэтому для противодействия большим внешним моментам сил мышцы должны развивать большую силу тяги.

 

Рис. 3.3. Особенности работы скелетных мышц человека

 

Момент силы считают положительным, если сила вызывает поворот тела против часовой стрелки, и отрицательным, при повороте тела по часовой стрелке. На рис. 3.3. сила тяжести гантели создает отрицательный момент силы, так как стремится повернуть предплечье в локтевом суставе по часовой стрелке. Сила тяги мышц-сгибателей предплечья создает положительный момент, так как стремится повернуть предплечье в локтевом суставе против часовой стрелки.

Импульс момента силы (Sм) – мера воздействия момента силы относительно данной оси за промежуток времени.

Кинетический момент (К) &‐ векторная величина, мера вращательного движения тела, характеризующая его способность передаваться другому телу в виде механического движения. Кинетический момент определяется по формуле: K =J ω.

Кинетический момент при вращательном движении является аналогом импульса тела (количества движения) при поступательном движении.

Пример. При выполнении прыжка в воду после выполнения отталкивания от мостика, кинетический момент тела человека (К) остается неизменным. Поэтому если уменьшить момент инерции (J), то есть произвести группировку, увеличивается угловая скорость ω. Перед входом в воду, спортсмен увеличивает момент инерции (выпрямляется), тем самым он уменьшает угловую скорость вращения.

Энергетические характеристики движений человека

К энергетическим характеристикам относятся:

· работа силы;

· мощность;

· механическая энергия.

Работа силы

Часто надо знать действие силы не во времени, а на каком-то участке пути. Например, при толкании ядра важна длина пути, на котором проявляется финальное усилие. Для характеристики действия, оказываемого силой на тело при некотором его перемещении, вводится понятие работы силы.

Работа силы (А) – это мера действия силы на некотором участке перемещения тела под действием этой силы. Численно работа силы равна произведению силы на путь.

Работу производит только та сила, которая вызывает изменение скорости по величине. Работа положительна, если тело ускоряет движение.

Работа силы тяжести равна произведению модуля силы на вертикальное перемещение точки ее приложения: Атяж= Fтяжhтяж.

Работа силы тяжести не зависит от вида траектории, по которой перемещается точка, а зависит лишь от координат тела.

Пример. Для того, чтобы поднять груз силового тренажера, массой m= 20 кг на высоту h= 0,5 м нужно совершить работу (А), равную: А=m g h = 20×9,8×0,5 = 100 Дж.

Если этот груз спортсмен поднимает за тренировку 30 раз, то проделанная им работа будет равна: А= 100 х 30= 3000 Дж.

Мощность – физическая величина, численно равная совершенной работе, за промежуток времени: N= A/Δt.

Мощность измеряется в Ваттах. Если работу по поднятию груза тренажера равную 3000 Дж выполнить за 10 минут, мощность работы будет равна 5 Вт: N10= 3000/600 = 5 Вт.

Если эту же работу выполнить за 5 минут мощность работы будет составлять: N5= 3000/300 = 10 Вт.

Механическая энергия

Механическое состояние тела определяется его координатами и скоростью. В каждом механическом состоянии тело обладает определенным запасом энергии.

Механическая энергия – энергия тела, обусловленная его механическим состоянием.

Когда мы говорим о механической энергии, то представляем себе запас возможной, но еще не совершенной работы. Если тело совершает работу за счет механической энергии, то его механическая энергия уменьшается на величину совершенной работы. Механическую энергию можно передать от одного тела к другому только путем совершения работы. Различают два вида механической энергии: потенциальную и кинетическую.

Потенциальная энергия системы тел – энергия взаимодействия тел системы, обусловленная их взаимным расположением в пространстве.

Потенциальной энергией всегда обладает система тел (по крайней мере двух). Потенциальная энергия тела в поле силы тяжести зависит от расположения тела относительно Земли. Она равна: Етяж= Fтяжhтяж.

Например, штанга массой m=100 кг, поднятая на высоту h = 2 м, обладает потенциальной энергией, равной: Етяж= m g h = 100 х 9,8 х 2 = 2000 Дж.

Кинетическая энергия тела при поступательном движении – скалярная величина, равная половине произведения массы тела на квадрат его скорости: E= mV2/2

Кинетическая энергия при вращательном движении – скалярная величина, равная произведению момента инерции тела на квадрат его угловой скорости: E <="" p="" style="text-align: justify;">

strong>= J ω2/2

 

7. Инерционные характеристики

Инерционные характеристики. Инерция – свойство тел сохранять скорость неизменной при отсутствии внешних воздействий. Сама инерция не имеет меры (измерителя). Но под действие сил разные тела изменяют свою скорость по-разному. Это их свойство (инертность) – имеет меру. Инертность – свойство физических тел, появляющееся в постепенном изменении скорости с течением времени под действием сил.

Масса тела – мера инертности тела при поступательном движении. Она измеряется отношением приложенной силы к вызванному ею ускорению: F = m*a. В абсолютно твердом теле есть три точки, положение которых совпадает – центр масс (ЦМ), центр инерции (ЦИ) и центр тяжести (ЦТ). Но это не тождественные понятия. В ЦМ пересекаются направления действия сил, любая из которых вызывает поступательное движение тела. Понятия ЦИ (точка приложения всех фиктивных сил инерции) и ЦТ (точка приложения равнодействующей всех сил тяжести) будут рассмотрены ниже.

Для вращательного движения понятию массы соответствует представление о моменте инерции. Момент инерции твердого тела (собственный или центральный) – это мера инертности тела при вращательном движении. Он определяется как сумма моментов инерции всех входящих в него частиц: I0 = m*r2, где r – радиус инерции точки (расстояние от точки до оси вращения). Если ось вращения не проходит через ЦМ тела или вообще не связана с телом, то момент инерции относительно этой оси (полный момент инерции тела) можно представить состоящим из двух слагаемых. А именно, центрального момента инерции тела относительно оси, проходящей через ЦМ и параллельной этой внешней оси, и произведения массы тела на квадрат расстояния между этими осями: I = I0 + m*r2.

Центральный момент инерции системы тел состоит из суммы центральных моментов инерции звеньев системы и суммы моментов инерции этих звеньев относительно ЦМ системы: I0s = I0 + m*r2. Полный момент инерции системы тел слагается из ее центрального момента инерции относительно оси, проходящей через ее ЦМ и параллельной этой внешней оси, и произведения массы тела на квадрат расстояния между этими осями: Iпs = I0s + m*r2.

 

8. Классификация сил в биомеханике. Внешние и внутренние силы.

 

Внешними (FiE) называют силы, действующие на точки системы со стороны точек или тел, не входящих в состав данной системы.     Внутренними (FiI) называют силы, с которыми точки или тела одной системы действуют друг на друга.  
Внешними силами являются: o силы тяжести собственного тела; o силы реакции опоры; o силы сопротивления внешней среды. При овладении техникой двигательных действий нужно стремиться к возможно более полному использованию всех движущих сил при одновременном уменьшении сил тормозящих.   Внутренние силы обладают следующими свойствами: Геометрическая сумма всех внутренних сил системы равняется нулю. На основании третьего закона Ньютона силы взаимодействия между точками (телами) равны и противоположно направлены, следовательно, и сумма этих сил равна нулю (∑FiI=0). На основании теоремы Вариньона и главный момент внутренних сил относительно произвольного центра также равен нулю (∑Mi0FiI=0). При ускоренном движении механической системы на каждую точку системы действует сила инерции Фi=-miai, направленная противоположно ускорению. Используя принцип Пуансо (см. раздел «Статика») можно эти силы для всей системы привести к какому-то центру и получить главный вектор и главный момент сил инерции Ф,M0Ф. Для твердого тела при приведении сил инерции к центру масс получаем: § при поступательном движении Ф=-М⋅aс , МсФ=0 § при вращении вокруг центра масс Ф=0, МсФ=-Jε § при произвольном движении Ф=-М⋅aс, МсФ=-Jε  

 

 

10. Технология получения динамических характеристик. Понятие о динамограммах.

 

 

11. Энергетические характеристики (классификация, обозначения, формулы, единицы измерения).

 

Энергетические характеристики. При движении человека силы, приложенные к его телу на некотором пути, совершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс при котором изменяется энергия системы. Энергия характеризует состояние системы, изменяющейся вследствие работы. энергетические характеристики показывают, как меняются виды энергии при движении и протекает сам процесс изменения энергии.

Работа силы – мера действия силы на тело при некотором его перемещении под действием этой силы. Если величина силы, приложенной к твердому телу (которое может быть принято за материальную точку), остается постоянной, то работа этой силы на прямолинейном перемещении рассчитывается по формуле: A = F*S*cos a, где F*cos a – проекция силы на направление перемещения, a – угол между вектором силы и вектором перемещения.

Так как силы в движениях человека обычно переменны, а движения точек криволинейны, работа силы представляет собой сумму элементарных работ: А = ΣF*cosα*DS, где DS – бесконечно малое перемещение, измеренное вдоль траектории.

Сила может совершать положительную и отрицательную работу – увеличивать или уменьшать энергию тела. Поскольку работа силы вызывает изменение энергии системы, для расчета полезной механической работы может использоваться выражение А = ΔЕк. + ΔЕп., где ΔЕк – изменение кинетической энергии тела, ΔЕп. – изменение потенциальной энергии тела.

Работа силы тяжести тела равна произведению его веса на разность высот конечного и начального положений: А = m*g*h = P*h. При опускании тела работа силы тяжести положительная и наоборот.

Работа силы упругости при удлинении (Dl) тела с коэффициентом жесткости (С) имеет выражение: А упр. = – C*Dl2 / 2.

Работа силы трения при прижимающей силе (сила нормального давления – N), коэффициенте трения k на перемещении DS равна: А тр. = – N*k*DS.

Работа силы тяжести и силы упругости не зависит от формы траектории тела; работв силы трения зависит от длины пути и, следовательно, от формы траектории.

При вращательном движении работа силы на конечном пути зависит от момента силы и углового перемещения: Az = M*Dj.

Важным показателем, характеризующим быстроту совершения работы, является мощность силы – мера быстроты приращения работы силы. Мощность (N) характеризует работу по времени, в течение которого она производилась: N = DA / Dt = F*V.

Эффективность приложения сил в механике определяют по коэффициенту полезного действия (к.п.д.) – отношению полезной работы ко всей затраченной работе движущих сил: h = Nп / N = Ап / А.

Механическая энергия тела определяется скоростями движения тел в системе и их взаимным расположением. Таким образом, механическая энергия это энергия движения и местоположения.

Кинетическая энергия тела – это его энергия его механического движения, определяющая возможность совершить работу. При поступательном движении она равна половине произведения массы тела на квадрат его скорости: Е к (пост) = m*v2 / 2. изменение кинетической энергии всегда равно работе сил внутренних и внешних по отношению к этому телу: DЕ к (пост) = F*DS.

При вращательном движении кинетическая энергия тела имеет выражение: Е к (вращ) = I*w2 /2, а ее изменение равно: DЕ к (вращ) = М*w.

Выражение кинетической энергии системы вращающихся тел можно представить как сумму кинетической энергии тел, вращающихся вокруг своих ЦМ вокруг осей параллельных основной оси вращения, и из кинетической энергии этих тел относительно основной оси вращения: SЕ к (вращ) = SЕ0 + SЕ.

Потенциальная энергия тела – это энергия его положения, обусловленная взаимным относительным расположением тел или частей одного и того же тела и характером их взаимодействия. Потенциальная энергия в поле сил тяжести: Е п (тяж) = m*g*h.

Потенциальная энергия упругодеформированного тела: Е п (упр) = C*Dl2 / 2.

Потенциальная энергия в поле сил тяжести зависит от расположения тела относительно Земли. Потенциальная энергия упругодеформированной системы зависит от взаимного расположения ее частей.

Полная кинетическая энергия тела человека равна сумме кинетической энергии ЦМ системы в поступательном движении и кинетической энергии тела во вращательном движении вокруг ЦМ: Ек = Епост. + Евращ..

 

12. Внутренняя и внешняя работа. Методы измерения работы и энергии при движениях человека.

 

 

13. Коэффициент механической эффективности движений энергетическая и пульсовая стоимость метра пути как характеристики экономичности двигательной деятельности человека.

 

 

14. Понятие о биомеханической системе тела человек составляющих ее элементах.



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 2312; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.248.24 (0.035 с.)