Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Скорость отдельных точек тела при плоском движении.↑ Стр 1 из 9Следующая ⇒ Содержание книги
Поиск на нашем сайте
Выберем в качестве полюса т. А (рис. 16) и выделим произвольную точку B сечения тела. Положение их в пространстве определим векторным способом (ra и rb соответственно). Кроме того, положение т. В определим, указав радиус-вектор r.
рис 16 По определений скорость т. В:
Таким образом, скорость любой точки тела при плоском движении определяется суммой двух составляющих. Выясним их смысл. Если в процессе движения тела (движение поступательное) то:
Следовательно, эта составляющая определяет скорость поступательной части движения вместе с полюсом. Если же в процессе движения (вращение вокруг т. А), скорость точки В равна:
очевидно, что эта составляющая представляет собой линейную скорость вращательной части движения вокруг полюса. Таким образом, в любой момент времени скорость произвольной точки тела, совершающего плоское движение, определяется векторной суммой скоростей поступательного движения вместе с полюсом и вращательного движения вокруг полюса. Может оказаться так, что для какой-либо точки тела сумма окажется равной нулю (точка в данный момент времени покоится). Такую точку называют мгновенным центром вращения, и плоское движение тела можно рассматривать в данный момент времени как вращение вокруг мгновенного центра вращения. Примером мгновенного центра может служить точка касания цилиндра с плоскостью, по которой он катится без скольжения. Задачи кинематики. ПЕРВАЯ ЗАДАЧА КИНЕМАТИКИ.
Первая задача кинематики состоит в нахождении кинематических характеристик движения по заданному закону движения. Пример: Закон движения точки задан в координатной форме Прежде всего, определим уравнение траектории точки в виде
Следовательно, траекторией точки является прямая (рис. 17). (рис. 17) Прямая ограничена максимальными отклонениями точки от положения равновесия ±А вдоль оси ОХ и ±B вдоль ОY.
Составляющие скорости равны:
а полная скорость:
Ускорение точки в проекциях на координатные оси: а полное: Таким образом, точка совершает гармонические колебания вдоль прямой, при этом ее скорость и ускорение изменяются тоже по гармоническому закону. Отклонение точки от положения равновесия:
ВТОРАЯ (ОСНОВНАЯ) ЗАДАЧА КИНЕМАТИКИ Вторая задача состоит в нахождении закона движения и кинематических характеристик движения по заданному ускорению и начальным условиям. Под начальными условиями понимают значения координат и скорости точки в начальный момент времени t=t0=0, Пусть ускорение точки задано его составляющими:
Начальные условия:
Рассмотрим сначала движение точки вдоль оси координат OX. По условию:
откуда:
Интегрируя (40), получаем:
Постоянную интегрирования C1 определяем из начальных условий: т.е.:
Из (42) следует, что
Интегрируя (43), получаем:
Постоянную интегрирования С2 также получаем из начальных условий:
следовательно:
Аналогично получаем для других координатных направлений:
Полная скорость равна:
ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ. Сила. ОПРЕДЕЛЕНИЯ: Изменение состояния тела происходит в результате взаимодействий, которые приводят к изменению, как внутреннего состояния тел, так и состояния их движения. Количественной мерой взаимодействий, приводящих к изменению состояний тел, является сила. Сила - векторная величина, она характеризуется следующими элементами: величиной, направлением в пространстве и точкой приложения силы. Линия, вдоль которой направлена сила, называется линией действия силы. Совокупность сил, приложенных к телу, называют системой сил.
Если под действием системы сил, приложенных к телу, оно может пребывать в состоянии покоя, система называется уравновешенной Если одну систему сил, приложенных к телу, можно заменить другой, не изменяя его состояние, системы называются эквивалентными. Сила, эквивалентная системе сил, называется равнодействующей этой системы. Сила, равная по величине равнодействующей и противоположно ей направленная, называется уравновешивающей. Силы взаимодействия между телами одной и той же системы называются внутренними. Силы взаимодействия с телами, не входящими в состав данной системы называются внешними. Силы, приложенные в одной точке тела, называются сосредоточенными. Силы, приложенные ко всем точкам поверхности или объема тела, называются распределенными.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 403; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.61.180 (0.007 с.) |