Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Исследование приборов для измерения скорости вращенияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Цель работы
Целью лабораторной работы являются изучение принципов работы электрических тахометров, ознакомление с конструкцией, экспериментальное определение характеристик.
Краткая теоретическая часть
2.2.1. Назначение и типы тахометров
Прибор, предназначенный для измерения частоты вращения, называется тахометром. В авиации тахометры применяются для измерения частоты вращения силовых агрегатов, а также вала двигателя. Частота вращения вала силовой установки летательного аппарата является важнейшим параметром, по которому судят о тяге или мощности двигателя, о динамической и тепловой напряженностях. Наибольшее распространение получили следующие методы измерения частоты вращения по принципу действия чувствительного элемента (ЧЭ): – центробежные, в которых ЧЭ реагирует на центробежную силу, развиваемую неуравновешенными массами при вращении вала; – магнитоиндукционные, основанные на зависимости наводимых в металлическом теле вихревых токов от частоты вращения; – электрические постоянного, переменного или импульсного тока, основанные на зависимости генерируемого напряжения от частоты вращения; – фотоэлектрические, основанные на модуляции светового потока вращающимися элементами и др. Магнитоиндукционные, тахометры нашли наиболее широкое применение в современной авиации.
2.2.2. Принцип работы магнитоиндукционного тахометра Принцип действия магнитоиндукционных тахометров основан на явлении наведения вихревых токов в металлическом теле вращающемся в магнитном поле (или в неподвижном теле, находящемся во вращающемся магнитном поле). Магнитоиндукционные тахометры бывают двух типов: с цилиндрическим ЧЭ (рис. 2.1 а) и с дисковым ЧЭ (рис. 2.1 б).
Рис. 2.1 а – тахометр с полым цилиндром; б – тахометр с диском; 1 – магнит; 2 – чувствительный элемент; 3 – термомагнитный шунт; 4 – магнитопровод.
Индукционные тахогенераторы редко применяются как измерительные приборы вследствие больших погрешностей, но они незаменимы в качестве датчиков угловой скорости в системах автоматики.
Рис. 2.2 Кинематические схемы магнитоиндукционных тахометров: а – с полым цилиндром; б – с диском; 1 – чувствительный элемент; 2 –магнит; 3 – магнитопровод.
К ним относятся магнитоиндукционные тахометры, которые бывают двух типов: с чувствительным элементом в виде тонкостенного электропроводящего полого цилиндра 1 (рис. 2.2 а), помещенного в зазоре между вращаемым магнитом 2 и магнитопроводом 3, или с чувствительным элементом в виде диска 1 (рис. 2.2 б), помещенного в зазоре между вращаемыми цилиндрическими магнитами 2. Обычно постоянные магниты вращаются с частотой, пропорциональной измеряемой частоте вращения вала двигателя, а чувствительные элементы (цилиндры и диски) закреплены на самостоятельных осях и могут поворачиваться лишь на некоторый угол, ограниченный спиральной противодействующей пружиной П. При вращении магнитной системы в теле чувствительного элемента (ЧЭ) за счет магнитной индукции наводится ЭДС, прямо пропорциональная скорости вращения магнита: (2.1) где k1 – коэффициент, зависящий от индукции магнитного потока, пронизывающего ЧЭ; пm – угловая скорость вращения магнита. ЭДС, индуцированная в ЧЭ, вызывает появление в нем индукционных токов i, величина которых зависит от ЭДС, вызвавшей их, числа пар полюсов магнита, размеров и материалов ЧЭ. Индукционные токи, в свою очередь, создают магнитное поле. В результате взаимодействия магнитных полей ЧЭ и постоянных магнитов возникает вращающий момент, стремящийся повернуть ЧЭ вслед за вращающимся магнитом. Вращающий момент, действующий на элемент, пропорционален величине индуцированного в нем вихревого тока, а следовательно, и скорости вращения магнита: (2.2) где k2 – постоянный коэффициент пропорциональности. Под действием вращающего момента ЧЭ поворачивается и закручивает пружину П, создающую противодействующий момент, пропорциональный углу закручивания пружины: (2.3) где с – жесткость пружины; a – угол закручивания пружины. На одной оси с ЧЭ укреплена стрелка, угол отклонения которой пропорционален угловой скорости вращения постоянного магнита. Угол поворота стрелки прибора определяется равенством моментов откуда (2.4) где – коэффициент, зависящий от жесткости пружины, конструкции и материала магнита и ЧЭ.
2.2.3. Состав и конструкция магнитоиндукционного тахометра
На самолетах и вертолетах находят применение магнитоиндукционные тахометры типа ТЭ (ТЭ-15, 2ТЭ-15-1, ТЭ-5-2М и др.) со шкалой, отградуированной в оборотах в минуту, и типа ИТЭ (ИТЭ-1, ИТЭ-2 и др.) со шкалой, отградуированной в процентах. Разница в устройстве их незначительна. В комплекты тахометров этого типа могут входить один – два датчика и один показывающий прибор, либо один датчик и один – два указателя. В частности, комплект тахометра может состоять из одного датчика ДТЭ-1 и одного показывающего прибора ИТЭ-1. Соответственно датчик ДТЭ-2, Д-3М или Д-3-2 должен работать в системе измерения оборотов совместно с двумя измерителями типа ИТЭ-1 (ИТЭ-1Т) или с показывающим прибором ИТЭ-2 (ИТЭ-2Т), объединяющим в одном корпусе две измерительные системы. Конструкция датчика Д-3-2 представлена на рис. 2.3.
Рис. 2.3 Датчик магнитоиндукционного тахометра Д-3-2: 1 – хвостовик; 2, 6 –крышки; 3, 7 – шарикоподшипники; 4 – ротор; 5 – статор; 8 – болт.
Датчик представляет собой трехфазный генератор переменного тока с четырехполюсным постоянным магнитом – ротором 4. Ротор напрессован на валу, заканчивающемся квадратным хвостовиком 1, которым вал генератора соединяется с приводом вала авиадвигателя. Эта передача обладает достаточной гибкостью и компенсирует скручивающие колебания и перекосы, которые могут возникнуть при монтаже датчика. Ротор вращается в шарикоподшипниках 3 и 7, которые установлены в крышках 2 и 6. Статор 5 датчика набран из пластин электротехнической стали. В целях уменьшения потерь в статоре от вихревых токов пластины изолированы одна от другой клеем. Обмотка статора – четырехполюсная, трехфазная, выполненная из медного провода. Фазовые обмотки соединены звездой. Магнитоиндукционный тахометр является дистанционным прибором. Синхронная дистанционная передача состоит из трехфазного генератора переменного тока (датчика), расположенного на авиадвигателе, трехпроводной линии и синхронного двигателя, размещенного в указателе.
Рис. 2.4 Электрокинематическая схема тахометра: 1 – плата с магнитами; 2 – диск демпфера; 3 – пружина; 4 – диск; 5 термомагнитный шунт; 6 – постоянные магниты; 7 – пружина; 8 – крестообразный магнит; 9 – гистерезисные диски; 10 – обмотка двигателя; 11 – дисковая плата; 12 – ось; 13 – шала; 14 – стрелка; 15 – якорь; 16 – обмотка статора.
Рис. 2.5 Кинематическая схема показывающего прибора тахосигнальной аппаратуры.
Рис. 2.6 Показывающий прибор тахометра ИТЭ – 1: 1 – плата с магнитами; 2 – диск демпфера; 3 – пружина; 4 – диск; 5 – термомагнитный шунт; 6 – постоянные магниты; 7 – пружина; 8 – крестообразный магнит; 9 – гистерезисные диски; 10 – обмотка двигателя; 11 – дисковая плата; 12 – ось; 13 – шкала; 14 –стрелка. Совместное рассмотрение рисунков 2.4 – 2.6 позволяет изучить конструкцию показывающего прибора и работу комплекта магнитоиндукционного тахометра типа ИТЭ. Показывающий прибор включает в себя два узла, смонтированные в одном корпусе, синхронный двигатель и измерительную систему (тахометр). Синхронный двигатель состоит из статора с трехфазной обмоткой 10 и ротора, собранного из двух крестообразных магнитов 5 и трех гистерезисных дисков 9. Постоянные крестообразные магниты насажены на вал свободно и могут поворачиваться относительно вала на некоторый угол, так как соединяются с ним пружиной 7, через которую передают крутящий момент на вал синхронного двигателя. Это обеспечивает вхождение двигателя в синхронизм до того, как он разовьет полную мощность. Гистерезисные диски 9 изготовляются из магнитотвердого материала. В синхронном режиме работы диски взаимодействуют с вращающимся полем так же,как и постоянные магниты, но с меньшей силой взаимодействия. Измерительная часть прибора состоит из магнитного узла с двумя дисковыми платами 11 с впрессованными в них шестью парами постоянных магнитов 6. На магниты надет термомагнитный шунт 5, предназначенный для компенсации температурной погрешности. Шунт выполнен из сплава, магнитная проницаемость которого с возрастанием температуры уменьшается. В воздушном зазоре между торцами противоположных полюсов магнитов расположен чувствительный элемент – диск 4, изготовленный из медно-марганцевого сплава с малым температурным коэффициентом. Таким образом, магнитный узел укреплен на конце вала синхронного двигателя и вращается с синхронной скоростью, а чувствительный элемент – диск связан, через ось 12 со стрелкой 14, перемещающейся по шкале 13. Для уменьшения колебаний стрелки около установившегося положения в конструкции прибора предусмотрен демпфер, по устройству аналогичный измерительному узлу 11. Платы 1 магнитного демпфера закреплены неподвижно. Между торцами шести пар неподвижных магнитов находится алюминиевый диск 2 демпфера, связанный с осью измерительного узла. Взаимодействие наводимых в алюминиевом диске вихревых токов с магнитным потоком магнитов приводит к превращению энергии колебаний в тепловую и к повышению устойчивости стрелки прибора. Тахометр ИТЭ-1 работает следующим образом. Напряжение статорной обмотки 16 генератора датчика с частотой, пропорциональной частоте вращения ротора авиадвигателя, возбуждает в статорной обмотке 10 синхронного двигателя показывающего прибора вращающееся магнитное поле, которое приводит к намагничиванию гистерезисных дисков двигателя. Гистерезисные диски выполнены из ферромагнитного материала с большой коэрцитивной силой, поэтому создаваемое ими магнитное поле из-за большого гистерезиса отстает на некоторый угол от намагничивающего поля статора. В результате возникает вращающий момент дисков ротора двигателя, направление которого совпадает с направлением вращающегося поля статорных обмоток. При частоте вращения ротора, близкой к синхронной, когда обороты ротора и поля статора становятся одинаковыми, постоянные магниты 8 успевают взаимодействовать с полем статора, входят в синхронизм и, постепенно закручивая пружину 7, начинают воспринимать полную нагрузку. В синхронном режиме работы двигателя основной вращающий момент создается в результате взаимодействия поля постоянных магнитов с вращающимся полем статора, а гистерезисные диски создают лишь незначительный дополнительный момент. При резких увеличениях частоты вращения авиадвигателя, следовательно, и скорости вращения магнитного поля статора возможен переход двигателя в асинхронный режим работы. В этом случае полюсы постоянных магнитов вращаются с некоторым отставанием от полюсов поля статора. Гистерезисные диски помогают ротору следовать за магнитным полем статора и вводят постоянные магниты ротора в синхронную работу. Ротор двигателя вращает магнитную систему 11 измерительного узла. В результате взаимодействия полей магнитов 6 и диска 4 чувствительный элемент (диск) с закрепленной на его оси стрелкой 14 поворачивается и закручивает противодействующую пружину 5. Таким образом, угол поворота диска пропорционален значению измеряемой частоты вращения. Демпфер, укрепленный на оси чувствительного элемента, успокаивает подвижную систему и облегчает снятие показаний стрелки указателя. Указатели ИТЭ-2 предназначены для измерения частоты вращения валов двух двигателей или двух ступеней компрессора одного двигателя. В корпусе указателя ИТЭ-2 размещены два измерительных узла, аналогичные рассмотренным, движение которых передается на две соосные стрелки. Магнитоиндукционный демпфер в них отсутствует. Демпфирование колебаний осуществляется за счет моментов трения зубчатых передач. К магнитоиндукционным тахометрам относится и тахометрическая сигнальная аппаратура (ТСА), которая может обеспечивать либо только выдачу дискретных сигналов соответствующих определенным частотам вращения вала (ТСА-12), либо выдачу дискретных сигналов и индикацию частоты вращения вала (ТСА-6). Конструкция показывающих приборов ТСА аналогична конструкции ИТЭ-1 (рис. 10). Отличие заключается лишь в наличии сигнального устройства, которое состоит из осветителей Л1, Л4 и фоторезисторов B1, B4, разделенных между собой профилированным диском. Диск укреплен на оси измерительного узла. При изменении скорости вращения профильный диск поворачивается, в результате меняется степень освещенности тех или иных фоторезисторов, включенных в схему управления, и тахометр выдает сигналы, соответствующие определенным частотам вращения, на исполнительные устройства. Шкала показывающего прибора ИТЭ отградуирована в процентах, измерительный предел – (0…110) %, цена деления – 1 %, погрешность измерения не превышает ±0,5 % в рабочем диапазоне шкалы от 60 до 100% и 1% - в остальном диапазоне. Основная погрешность выдачи дискретных сигналов ТСА не превышает ±2 %. Датчики магнитоиндукционных тахометров не имеют методической погрешности. Основная инструментальная погрешность указателя тахометра определяется трением в подшипниках и ошибками градуировки шкалы. Дополнительные погрешности обусловлены прежде всего влиянием температуры и вызываются изменением электрического сопротивления чувствительного элемента, магнитной проводимости магнитопроводов и упругих свойств противодействующей пружины. Конструктивная погрешность из-за изменения температуры окружающей среды частично компенсируется подбором материалов деталей. В частности, чувствительный элемент - диск изготовляется из марганцовистой меди (96,1 % Сu, 3,9 % Мn) с положительным температурным коэффициентом. Противодействующая пружина из фосфористой бронзы и магниты из соответствующих сплавов имеют отрицательные температурные коэффициенты. Для компенсации остаточной температурной погрешности применяется температурный шунт 5, надетый на магниты 6. Шунт выполнен из сплава, магнитная проницаемость которого с возрастанием температуры уменьшается. Действие шунта заключается в следующем. С увеличением температуры окружающей среды увеличивается сопротивление токопроводящего диска 4 и уменьшается сила наведенного тока. Одновременно с этим уменьшается магнитная проницаемость шунта, который меньшую часть магнитного потока пропускает через себя, вследствие чего увеличивается магнитная индукция в зазоре измерительного магнитного узла. При этом сила взаимодействия постоянных магнитов 6 и токов в диске 4, аследовательно, и движущий момент практически остаются неизменными.
|
||||
Последнее изменение этой страницы: 2016-09-13; просмотров: 629; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.104.132 (0.008 с.) |