Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Принцип замкнутого цикла или обратная связь.

Поиск

 

Обратная связь это воздействие результатов управляемого процесса у(t) на УУ. Обратная связь характеризует системы регулирования и управления в живой природе, обществе и технике. Различают положительную и отрицательную обратную связь. Когда результаты процесса управления ослабляют его действие, то имеет место отрицательная обратная связь. В противном случае имеет место положительная обратная связь. Отрицательная обратная связь стабилизирует протекание процессов. Положительная обратная связь, напротив, обычно приводит к ускоренному развитию процессов и к колебательным процессам.

Функция передачи Fc устройства с ОС может быть определена из формулы:

(2)

где F0 — функция передачи устройства без ОС; ß — функция цепи ОС; ß F0 — петлевое усиление; 1 — ß F0 — глубина ОС. По способу подключения цепей ОС ко входу и выходу устройства различают последовательную и параллельную ОС, если выход цепи ОС подключен последовательно (рис. 5, а, б)или параллельно (рис.5, б, г) источнику сигнала, и смешанную (комбинированную) по входу, если подключение цепей ОС к источнику сигнала последовательно-параллельное. Различают также ОС по напряжению и по току, если напряжение или ток на входе цепи ОС пропорциональны соответственно напряжению на нагрузочном сопротивлении (рис. 5, б, г) или току в нём (рис. 5, а, в), и ОС смешанную (комбинированную) по выходу, если подключение цепей ОС к нагрузочному (выходному) сопротивлению последовательно-параллельное. Рис.5.

Свойства и применение обратной связи. В устройстве с положительной ОС при петлевом усилении ≥ 1 могут возникнуть автоколебания, что и используют в различного рода генераторах электрических колебаний. Положительные ОС с ß F0 < 1 применяют для усиления некоторых свойств устройства, например для увеличения селективности и чувствительности радиоприёмника при регенеративном приёме. Важнейшим свойством отрицательной ОС является то, что она приближает функцию передачи устройства к функции, обратной функции передачи цепи ОС, и тем сильнее, чем больше глубина ОС. Поэтому её применяют главным образом для стабилизации параметров устройства (например, коэффициент усиления усилителя электрических колебаний) и уменьшения возникающих в нём нелинейных искажений (в 1 — ß F0 раз). Кроме функции передачи, ОС изменяет входную и выходную реакции устройства с ОС. Отрицательная параллельная (последовательная) ОС по напряжению (току) уменьшает (увеличивает) соответственно входное и выходное сопротивление устройства с ОС Положительная ОС ведёт себя противоположным образом. Комплексную частотно-зависимую ОС применяют для создания т. н. активных электрических фильтров. Она также позволяет реализовать в электрических и радиотехнических устройствах элементы электрических цепей, не существующие в виде физических приборов, например элементы с отрицательной ёмкостью и с отрицательной индуктивностью, гиратор (преобразователь полного сопротивления, например ёмкостного в индуктивное) на любую рабочую частоту и элементы с электрически управляемыми параметрами. Иногда такая ОС используется для нейтрализации нежелательной внутренней ОС в электронных приборах.

Принцип замкнутого цикла (принцип обратной связи) заключается в том, что закон управления формируется на основе отклонения управляемой величины от задающего воздействия. Такое управление называется управлением по отклонению, при котором управляемая величина оказывает влияние на управляющее воздействие. Система, реализующая этот принцип, называется замкнутой или системой управления с обратной связью. Функциональная схема замкнутой системы изображена на рис. 6.

 

Рис. 6. Функциональная схема замкнутой системы

 

Элементы системы:

ОУ – объект управления;

ЗУ – задающее устройство;

ИПУ - измерительно-преобразовательное устройство;

СУ - сравнивающее устройство;

R – регулятор.

Координаты (переменные) системы:

g(t) – задающее воздействие;

y(t) – управляемая (регулируемая) величина;

f(t) – возмущающее воздействие;

x(t) - рассогласование (ошибка);

u(t) – управляющее воздействие.

 

Для получения замкнутой системы требуется разомкнутую систему “замкнуть” путем введения в нее дополнительных устройств: измерительно-преобразовательного и сравнивающего. Измерительно-преобразовательное устройство служит для измерения (наблюдения) управляемой величины и преобразования к виду, удобному для обработки и передачи. ИПУ реализует обратную связь, то есть связь причины и следствия, которая позволяет формировать управляющее воздействие с учетом результата управления. Сравнивающее устройство предназначено для сравнения управляемой величины с задающим воздействием и выдачи результата сравнения в виде сигнала рассогласования

x(t) = g(t) - y(t). (3)

Рассогласование представляет собой отклонение управляемой величины от задающего воздействия, т.е. является ошибкой системы, и служит источником формирования регулятором управляющего воздействия. Следовательно, закон управления в замкнутой системе является функцией рассогласования

u(t) = F[x(t)]. (4)

Управляющее воздействие прикладывается к объекту управления до тех пор пока x(t)®0. Таким образом, замкнутая система работает так, чтобы все время сводить к нулю рассогласование x(t). Принцип замкнутого цикла (обратной связи) – основной принцип управления. Он лежит в основе подавляющего большинства систем управления, так как решающую роль при управлении играет информация о результатах управления. Основным достоинством замкнутых систем является их высокая точность, однако быстродействие их ниже, чем у разомкнутых систем. Примерами замкнутых систем могут служить: система стабилизации температуры в холодильнике, автопилот, система самонаведения снаряда на цель, система обучения в высшей школе и т.д.

Пример. На рис.7 изображена упрощенная схема САУ хлебопекарной печи. Роль ЗУ здесь выполняет потенциометр, напряжение на котором U з сравнивается с напряжением на термопаре U т. Их разность U через усилитель подается на исполнительный двигатель ИД, регулирующий через редуктор положение движка реостата в цепи НЭ. Наличие усилителя говорит о том, что данная САУ является системой непрямого регулирования, так как энергия для функций управления берется от посторонних источников питания, в отличие от систем прямого регулирования, в которых энергия берется непосредственно от ОУ, как, например, в САУ уровня воды в баке (рис.8). Рис.7.

Рис.8.

Комбинированный принцип.

Комбинированный принцип заключается в сочетании принципов разомкнутого и замкнутого циклов в одной системе. Такое управление, сочетающее в себе управление по задающему воздействию и отклонению, называется комбинированным управлением. Оно обеспечивает высокую точность и высокое быстродействие. Система, реализующая комбинированный принцип, называется комбинированной.

Функциональная схема комбинированной системы представлена на рис. 1.3.

 

 

Рис. 10. Функциональная схема комбинированной системы

 

Для реализации комбинированной системы в замкнутую систему требуется включить дополнительные функциональные элементы: КЦЗ и КЦВ. КЦЗ – компенсирующая цепь по задающему воздействию, позволяет скомпенсировать ошибку работы системы от задающего воздействия. КЦВ – компенсирующая цепь по возмущающему воздействию, позволяет скомпенсировать негативное влияние возмущающего воздействия на работу системы. Компенсирующие цепи представляют собой дифференцирующие устройства и служат для прогнозирования входных воздействий системы, что позволяет системе работать с предвидением. Благодаря этому, комбинированные системы обладают повышенной точностью и быстродействием. Из функциональной схемы следует, что закон управления комбинированной системы имеет вид:

 

u(t) = F[x(t),g(t),f(t)]. (5)

 

В общем случае управляющее воздействие в комбинированной системе является функцией рассогласования, задающего и возмущающего воздействий. Кроме того, можно сделать комбинированную систему только по задающему воздействию, если

 

u(t) = F[x(t),g(t)], (6)

и только по возмущающему воздействию, если

 

u(t) = F[x(t),f(t)]. (7)

 

Комбинированное управление позволяет реализовывать инвариантные к внешним воздействиям системы управления. Принцип адаптации заключается в том, что системы, реализующие этот принцип, в процессе работы приспосабливаются, адаптируются к изменяющимся внешним условиям. Такое управление называется адаптивным, а системы, работающие в соответствии с данным принципом, называется адаптивными. Адаптивные системы имеют в своем составе, как правило, дополнительные блоки и контуры для анализа показателей качества процесса управления или внешних условий, по которым необходима адаптация. Адаптивные системы бывают экстремальные, самонастраивающиеся и самоорганизующиеся. Экстремальные системы или системы с самонастройкой программы. Это системы, которые сами ищут наивыгоднейшую программу, т.е. то значение управляемой величины, которое нужно в данный момент выдерживать, чтобы режим работы объекта управления был наилучшим по какому-либо параметру. При этом имеется в виду не выбор закона управления, а автоматическая установка задающего воздействия, такого, при котором обеспечивается наивыгоднейшее значение управляемой величины при изменяющихся внешних условиях работы системы. Таким образом, на экстремальную систему накладывается дополнительная задача автоматического поиска наивыгоднейшего значения требуемой управляемой величины, т.е. самой программы управления.

На рис. 11 приведена функциональная схема экстремальной системы. Для получения экстремальной системы в замкнутую систему дополнительно включают УАПЭ - устройство автоматического поиска экстремума, которое анализирует параметр объекта управления r, определяющий его режим работы, и воздействует на задающее устройство с целью изменения задающего воздействия g(t) для обеспечения наивыгоднейшего режима работы объекта управления. Анализ параметра r и изменение задающего воздействия g(t) осуществляется до тех пор, пока r (параметр объекта управления, который оптимизируется) не примет экстремальное значение.

 

 

Рис. 11. Функциональная схема экстремальной системы

 

 

Так в экстремальных системах(рис.12)

 

 

Рис.12.

требуется, чтобы выходная величина всегда принимала экстремальное значение из всех возможных, которое заранее не определено и может непредсказуемо изменяться. Для его поиска система выполняет небольшие пробные движения и анализирует реакцию выходной величины на эти пробы. После этого вырабатывается управляющее воздействие, приближающее выходную величину к экстремальному значению. Процесс повторяется непрерывно. Так как в данных САУ происходит непрерывная оценка выходного параметра, то они выполняются только в соответствии с третьим принципом управления: принципом обратной связи. Примерами экстремальных систем могут служить: система автоматического поддержания максимальной скорости проходки скважины турбобуром при меняющихся свойствах грунта; автоматические системы управления различными производственными процессами, поддерживающие наивыгоднейший режим работы станков; система поддержания наивыгоднейшей скорости движения автомобиля, соответствующей минимуму расхода горючего на единицу длины пути и т.д. Самонастраивающиеся системы с самонастройкой параметров. Это такие системы, в которых В этих системах автоматически в процессе работы в соответствии с изменением внешних условий изменяются какие-нибудь параметры регулятора (не заданным заранее образом). Это изменение параметров осуществляется таким образом, чтобы заданное качество работы системы сохранялось или обеспечивалось максимальное качество, возможное в данных реальных условиях. Эти системы работают по принципу самообучения. Они в процессе работы изучают объект управления и обучаются управлять им наилучшим образом.

Простейшими самонастраивающимися системами являются системы с самонастройкой параметров регулятора по задающему и возмущающему воздействиям (рис.12). Эти системы содержат в своем составе анализатор А для анализа задающего и возмущающего воздействий и контур настройки регулятора КН для настройки параметров регулятора в соответствии с заданным критерием. Примерами самонастраивающихся систем могут служить радиотехнические системы с контурами автоматических регулировок усиления (АРУ) и подстроек частоты (АПЧ, ФАПЧ).

 

 

Рис. 12. Функциональная схема самонастраивающейся системы

 

Самоорганизующиеся системы или системы с самонастройкой структуры. Это системы, которые наилучших режимов работы достигают не изменением параметров регулятора, а путем изменения самой структуры регулятора не заданным заранее образом. В самоорганизующуюся систему закладывается лишь тот или иной определенный критерий качества работы системы или комбинация критериев для различных внешних условий работы системы. Система сама путем автоматического поиска выбирает такую структуру (из возможных, имеющихся в ее распоряжении), при которой удовлетворяется заданный критерий качества работы всей системы. Примером систем с самонастройкой структуры являются двухотсчетные системы, получившие широкое распространение. Эти системы имеют в своем составе два измерительных канала: грубого и точного отсчетов. Нужный измерительный канал выбирается системой в зависимости от величины рассогласования. Кроме чисто технических автоматических систем аналогичные принципы действия заложены и в биологических системах, экономических системах и т.п., что изучается соответствующими направлениями кибернетики и общей теории систем управления.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 893; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.131.115 (0.009 с.)