Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие структурной устойчивости.

Поиск

 

САУ может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.

САУ, неустойчивые по первой причине называются структурно неустойчивыми. Это означает, что изменением пара

 

метров САУ нельзя добиться ее устойчивости, нужно менять ее структуру. Например, если САУ состоит из любого количества инерционных и колебательных звеньев, она имеет вид, показанный на рис.72. При увеличении коэффициента усиления САУ K каждая точка ее АФЧХ удаляется от начала координат, пока при некотором значении Kкрит АФЧХ не пересечет точку (-1, j0). При дальнейшем увеличении K, САУ будет неустойчива. И наоборот, при уменьшении K такую САУ в принципе возможно сделать устойчивой, поэтому ее называют структурно устойчивой. Если САУ астатическая, то при ее размыкании характеристическое уравнение можно представить в виде: p D1p(p) = 0, где n - порядок астатизма, равный количеству последовательно включенных интеграторов. Это уравнение имеет нулевые корни, поэтому при 0, АФЧХ стремится к (рис.71в и 71г). Например, пусть

Wр(p) = ,

здесь = 1, тогда АФЧХ разомкнутой САУ:

 

W(j ) = = P() + jQ().

 

 

Так как порядок знаменателя больше порядка числителя, то при 0 имеем P() - , Q() -j . Подобная АФЧХ представлена на рис.73. Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0). В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при 0, ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, САУ, имеющая одно интегрирующее звено, является структурно устойчивой.

 

 

 

Если САУ имеет два интегрирующих звена (порядок астатизма = 2), ее АФЧХ уходит в бесконечность во втором квадранте (рис.74). Например, пусть

Wр(p) = ,

тогда АФЧХ САУ:

W(j ) = =

P() + jQ().

При 0 имеем P() - , Q() + j . Такая САУ не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива. Структурно неустойчивую САУ можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие или форсирующие) или изменив структуру САУ, например, с помощью местных обратных связей.

 

Понятие запаса устойчивости

 

 

В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать САУ так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости. Согласно критерия Найквиста, чем дальше АФЧХ от критической точки (-1, j0), тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе. Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой САУ от критической точки в направлении вещественной оси и определяется расстоянием h от критической

 

 

 

 

 

точки до точки пересечения годографом оси абсцисс (рис.75). Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью. Как уже отмечалось, с ростом коэффициента передачи разомкнутой САУ растет модуль каждой точки АФЧХ и при некотором значении K = Kкр АФЧХ пройдет через критическую точку (рис.76) и попадет на границу устойчивости, а при K > Kкр замкнутая САУ станет неустойчива. Однако в случае “клювообразных” АФЧХ (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых САУ (рис.77). В этом случае запас устойчивости определяется двумя отрезками h1 и h2, заключенными между критической точкой и АФЧХ.

Обычно при создании САУ задаются требуемыми запасами устойчивости h и , за пределы которых она выходить не должна. Эти пределы выставляются в виде сектора, вычерчиваемого вокруг критической точки, в который АФЧХ разомкнутой САУ входить не должна (рис.78).

 

Анализ устойчивости по ЛЧХ

Оценку устойчивости по критерию Найквиста удобнее производить по ЛЧХ разомкнутой САУ. Очевидно, что каждой точке АФЧХ будут соответствовать определенные точки ЛАЧХ и ЛФЧХ. Пусть известны частотные характеристики двух разомкнутых САУ (1 и 2), отличающихся друг от друга только коэффициентом передачи K1 < K2. Пусть первая САУ устойчива в замкнутом состоянии, вторая нет.(рис.79).

 

 

Если W1(p) - передаточная функция первой САУ, то передаточная функция второй САУ W2(p) = K W1(p), где K = K2/K1. Вторую САУ можно представить последовательной цепочкой из двух звеньев с передаточными функциями K (безынерционное звено) и W1(p), поэтому результирующие ЛЧХ строятся как сумма ЛЧХ каждого из звеньев.

Поэтому ЛАЧХ второй САУ:

L2() = 20lgK + L1(),

а ЛФЧХ:

2() = 1().

Пересечениям АФЧХ вещественной оси соответствует значение фазы = - . Это соответствует точке пересечения ЛФЧХ = - линии координатной сетки. При этом, как видно на АФЧХ, амплитуды A1() < 1, A2() > 1, что соответствует на САЧХ значениям L1() = 20lgA1() < 0 и L2() > 0. Сравнивая АФЧХ и ЛФЧХ можно заключить, что система в замкнутом состоянии будет устойчива, если значению ЛФЧХ = - будут соответствовать отрицательные значения ЛАЧХ и наоборот. Запасам устойчивости по модулю h1 и h2, определенным по АФЧХ соответствуют расстояния от оси абсцисс до ЛАЧХ в точках, где = - , но в логарифмическом масштабе. Особыми точками являются точки пересечения АФЧХ с единичной окружностью. Частоты c1 и c2, при которых это происходит называют частотами среза.

В точках пересечения A() = 1 = > L() = 0 - ЛАЧХ пересекает горизонтальную ось. Если при частоте среза фаза АФЧХ c1 >- (рис.79а кривая 1), то замкнутая САУ устойчива. На рис.79б это выглядит так, что пересечению ЛАЧХ горизонтальной оси соответствует точка ЛФЧХ, расположенная выше линии = - . И наоборот для неустойчивой замкнутой САУ (рис.79а кривая 2) c2 < - , поэтому при = c2 ЛФЧХ проходит ниже линии = - . Угол 1 = c1-(- ) является запасом устойчивости по фазе. Этот угол соответствует расстоянию от линии = - до ЛФЧХ.

Исходя из сказанного, критерий устойчивости Наквиста по логарифмическим ЧХ, в случаях, когда АФЧХ только один раз пересекает отрезок вещественной оси [- ;-1], можно сформулировать так: для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы частота, при которой ЛФЧХ пересекает линию = - , была больше частоты среза.

 

 

Если АФЧХ разомкнутой САУ имеет сложный вид (рис.80), то ЛФЧХ может несколько раз пересекать линию = - . В этом случае применение критерия Найквиста несколько усложняется. Однако во многих случаях данной формулировки критерия Найквиста оказывается достаточно.

 

6. ОЦЕНКА КАЧЕСТВА УПРАВЛЕНИЯ

 

6.1. Общие понятия

 

Качество представляет собой комплексную оценку работы системы управления, включающую устойчивость, точность, быстродействие и зависящую от назначения системы.

Устойчивость системы обеспечивает затухание переходных процессов с течением времени, т.е. обеспечивает принципиальную возможность прихода системы в некоторое установившееся состояние при любом внешнем воздействии. Однако далее требуется, во-первых, чтобы это установившееся состояние было достаточно близко к заданному и, во-вторых, чтобы затухание переходного процесса было достаточно быстрым, а отклонения при этом были бы невелики.

Качество работы любой системы управления в конечном счете определяется величиной ошибки, равной разности между требуемым и действительным значениями управляемой величины: x(t)=g(t)-y(t).

 

 

Рис. 6.1. Временная диаграмма изменения ошибки

 

Характер процесса изменения ошибки, представленного на рис.6.1, позволяет сделать вывод об устойчивости системы, так как процесс сходится, оценить точность работы системы по величине установившейся ошибки Dуст =x(¥) и оценить быстродействие системы по времени регулирования tр, то есть времени, за которое ошибка системы достигает допустимое значение и при дальнейшем росте времени не превышает его.

Процесс изменения ошибки во времени определяется решением дифференциального уравнения (4.1) динамики замкнутой системы

 

D(p)x(t) = Q(p)g(t) + N(p)f(t). (6.1)

 

Это решение включает в себя две составляющие

 

x(t) = xn(t) + xв(t), (6.2)

 

где xn(t) - общее решение однородного уравнения D(p)x(t)=0, представляющее собой переходный процесс в системе и имеющее вид

, (6.3)

причем ci - постоянные коэффициенты, определяемые из началь-ных условий процесса, а pi - корни характеристического уравнения D(p)=0;

xв(t) - частное или вынужденное решение определяется правой частью дифференциального уравнения динамики замкнутой системы (6.1) и представляет собой установившуюся часть процесса управления.

Таким образом, полное решение (6.2), описывающее процесс в линейной системе, представляет собой собственное движение системы xn(t), наложенное на установившуюся составляющую xB(t).

Знание мгновенного значения ошибки в течение всего времени работы системы дает возможность наиболее полно судить о ее свойствах.

Однако ошибка системы зависит не только от характеристик самой системы (полиномов D(p), Q(p), N(p)), но и от свойств, действующих на нее воздействий. Вследствие случайности задающего g(t) и возмущающего f(t) воздействий такой подход не может быть реализован. Поэтому приходится оценивать качество системы управления по некоторым ее свойствам, проявляющимся при различных типовых воздействиях. Для определения качественных показателей системы управления в этом случае используются так называемые критерии качества.

В настоящее время разработано большое число различных критериев качества, с помощью которых оценивается либо точность системы в установившемся состоянии, либо качество переходного процесса.

Точность системы задается и определяется в установившихся режимах величиной установившейся ошибки. Для анализа качества переходного процесса существует три основных вида приближенных оценок: частотные, корневые, интегральные.

 



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 233; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.140.232 (0.013 с.)