Прямое и обратное включение p-n перехода 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Прямое и обратное включение p-n перехода



Свойства p-n перехода

 

1) Образование электронно-дырочного перехода. Ввиду неравномерной концен- трации на границе раздела p и n полупроводника возникает диффузионный ток, за счёт ко- торого электроны из n-области переходят в p-область, а на их месте остаются некомпенси- рованные заряды положительных ионов донорной примеси. Электроны, приходящие в p- область, рекомбинируют с дырками, и возникают некомпенсированные заряды отрицатель- ных ионов акцепторной примеси. Ширина p-n перехода – десятые доли микрона. На грани- це раздела возникает внутреннее электрическое поле p-n перехода, которое будет тормозя- щим для основных носителей заряда и будет их отбрасывать от границы раздела.


Р n

 

 


Si Si


Si Si


 

 

- + В + - Р

 

 


Si Si


Si Si


 

Рис. 13

Для неосновных носителей заряда поле будет ускоряющим и будет переносить их в область, где они будут основными. Максимум напряжённости электрического поля – на границе разде- ла.

+ - + -

- +

- - +

- + +

p - + n

 

E DC

 

 

x

j

 

j к

 

 

x

 

Рис. 14

Распределение потенциала по ширине полупроводника называется потенциальной диаграм- мой. Разность потенциалов на p-n переходе называется контактной разностью потенциалов или потенциальным барьером. Для того, чтобы основной носитель заряда смог преодолеть p-n переход, его энергия должна быть достаточной для преодоления потенциального барьера.

Прямое и обратное включение p-n перехода.

Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направле-

но навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэто- му через p-n переход будет протекать сравнительно большой ток, вызванный основными носи- телями заряда.


 

E в н.


 

Eв н.


 

- +

- +

- +

- +

p - +


 

E p -n.

 

 

n


 

- +

- +

- + Ep-n.

- +

- +


 

j D C


p n

 

j DC


 

x

x

 

D x

Dx'


 

Р и с. 1 5


 

Р ис. 1 6


 

Такое включение p-n перехода называется прямым, и ток через p-n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении p-n переход открыт. Если подключить внешнее напряжение минусом на p-область, а плюсом на n-область, то возникает внешнее электрическое поле, линии напряжённости кото- рого совпадают с внутренним полем p-n перехода. В результате это приведёт к увеличению по- тенциального барьера и ширины p-n перехода. Основные носители заряда не смогут преодо- леть p-n переход, и считается, что p-n переход закрыт. Оба поля – и внутреннее и внешнее - яв- ляются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через p-n переход, образуя очень маленький ток, который называется обрат- ным током. Такое включение p-n перехода также называется обратным.

3) Свойства p-n перехода. К основным свойствам p-n перехода относятся:

свойство односторонней проводимости;

температурные свойства p-n перехода; частотные свойства p-n перехода; пробой p-n перехода.

Свойство односторонней проводимости p-n перехода нетрудно рассмотреть на вольтамперной характеристике. Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через p-n переход тока от величины приложенного напряжения. I=f(U).

Будем считать прямое напряжение положительным, обратное – отрицательным. Ток через p-n переход может быть определён следующим образом:

e' × U


 

I = I 0× e


 

k × T


-1 ,


где I0 – ток, вызванный прохождением собственных носителей заряда;

e – основание натурального логарифма;

e’ – заряд электрона; Т – температура;

U – напряжение, приложенное к p-n переходу;

k – постоянная Больцмана. При прямом включении:


 

Iпр = I 0× e


e ' × U

k × T


 

-1 


e '

k × T


 

= const = c


I = fU

Iпр = I 0× e ec × U ≫1


 

c × U


 

-1 


Iпр = Ie


c × U


При увеличении прямого напряжения прямой ток изменяется по экспоненциальному закону. При обратном включении:

- c × U


Iобр = I 0× e

e - c × U ≪1

Iобр =- I 0


-1 


 

o o


 

Iпр


t2 >t1


 

 

Uобр

 


 

 

Iобр


Uпр


 

Рис. 17

Так как величина обратного тока во много раз меньше, чем прямого, то обратным током мож- но пренебречь и считать, что p-n переход проводит ток только в одну сторону.

Температурное свойство p-n перехода показывает, как изменяется работа p-n перехода при из- менении температуры. На p-n переход в значительной степени влияет нагрев, в очень малой степени – охлаждение. При увеличении температуры увеличивается термогенерация носи- телей заряда, что приводит к увеличению как прямого, так и обратного тока.

Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода.

 

 

Sp-n

- +


-

-


+

+


 

P n

 

D Х

 

Рис. 18

Первый вид ёмкости – это ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью.

ε×ε0× S

C =

d

ε×ε0× Sp - n

C =  x


Второй тип ёмкости – это диффузионная ёмкость, обусловленная диффузией подвижных носи- телей заряда через p-n переход при прямом включении.

Cдиф = QUnp

Q– суммарный заряд, протекающий через p-nпереход.

 

Ri

 

 

Сi

 

Cp-n = Cбарьерн.+Сдиф.

 

Рис. 19

Ri – внутреннее сопротивление p-n перехода.

Ri очень мало при прямом включении [Ri = (n∙1 ÷ n∙10) Ом] и будет велико при обратном

включении [Riобр = (n∙100 кОм ÷ n∙1 МОм)].

x =1

c × c

 

U

 

+ +

 

t

-

 

 

Рис. 20

Если на p-n переход подавать переменное напряжение, то ёмкостное сопротивление p-n пере- хода будет уменьшаться с увеличением частоты, и при некоторых больших частотах ём- костное сопротивление может сравняться с внутренним сопротивлением p-n перехода при пря- мом включении. В этом случае при обратном включении через эту ёмкость потечёт достаточно большой обратный ток, и p-n переход потеряет свойство односторонней проводимости.

Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.

На частотные свойства основное влияние оказывает барьерная ёмкость, т. к. диффузионная ёмкость имеет место при прямом включении, когда внутреннее сопротивление p-n перехода мало.

Пробой p-n перехода. Iобр = - Io

Iпр

 

 


U о б р


Uпр


 

У ч а с т о к

э л е к т р и ч е с к о г о п р о б о я

 


У ч а с т о к

т е п л о в о г о п р о б о я


 

Iо б р

 

Р ис. 2 1


При увеличении обратного напряжения энергия электрического поля становится достаточной для генерации носителей заряда. Это приводит к сильному увеличению обратного тока. Явление сильного увеличения обратного тока при определённом обратном напряжении назы- вается электрическим пробоем p-n перехода.


Электрический пробой – это обратимый пробой, т. е. при уменьшении обратного напряжения p-n переход восстанавливает свойство односторонней проводимости. Если обратное напряже- ние не уменьшить, то полупроводник сильно нагреется за счёт теплового действия тока и p-n переход сгорает. Такое явление называется тепловым пробоем p-n перехода. Тепловой пробой необратим.

Полупроводниковые приборы Устройство, классификация и основные параметры полупроводниковых диодов

 

Классификация и условные обозначения полупроводниковых диодов

Конструкция полупроводниковых диодов

Вольтамперная характеристика и основные параметры полупроводни- ковых диодов

 

 

1) Классификация и условные обозначения полупроводниковых диодов. Полупроводни- ковым диодом называется устройство, состоящее из кристалла полупроводника, содержа- щее обычно один p-n переход и имеющее два вывода.

Классификация диодов производится по следующим признакам:

1] По конструкции: плоскостные диоды; точечные диоды; микросплавные диоды.

2] По мощности: маломощные; средней мощности; мощные.

3] По частоте: низкочастотные; высокочастотные; СВЧ.

4] По функциональному назначению: выпрямительные диоды; импульсные диоды; стабилитроны;

варикапы; светодиоды; тоннельные диоды и так далее.

Условное обозначение диодов подразделяется на два вида:

- маркировка диодов;

- условное графическое обозначение (УГО) – обозначение на принципиальных электрических схемах.

По старому ГОСТу все диоды обозначались буквой Д и цифрой, которая указывала на элек- трические параметры, находящиеся в справочнике.

Новый ГОСТ на маркировку диодов состоит из 4 обозначений:

К С -156 А Г Д -507 Б


 

I II III IV

 

Рис. 26

 

I – показывает материал полупроводника

Г (1) – германий; К (2) – кремний; А (3) – арсенид галлия.

II – тип полупроводникового диода:

Д – выпрямительные, ВЧ и импульсные диоды;

А – диоды СВЧ;

C – стабилитроны; В – варикапы;

И – туннельные диоды; Ф – фотодиоды;

Л – светодиоды;

Ц – выпрямительные столбы и блоки.

III – три цифры – группа диодов по своим электрическим параметрам:

ì101¸399 выпрямительные

ï

Д í 401¸499 ВЧдиоды

ï 501¸599 импульсные

IV – модификация диодов в данной (третьей) группе.

УГО:

 

а) б) в) г) д) е) ж) з)

а) Так обозначают выпрямительные, высокочастотные, СВЧ, импульсные и диоды Гана; б) стабилитроны; в) варикапы; г) тоннельные диоды; д) диоды Шоттки; е) светодиоды; ж) фотодиоды; з) выпрямительные блоки

Рис. 27

 

2) Конструкция полупроводниковых диодов. Основой плоскостных и точечных диодов яв- ляется кристалл полупроводника n-типа проводимости, который называется базой транзи- стора. База припаивается к металлической пластинке, которая называется кристаллодержа- телем. Для плоскостного диода на базу накладывается материал акцепторной примеси и в вакуумной печи при высокой температуре (порядка 500 °С) происходит диффузия акцеп- торной примеси в базу диода, в результате чего образуется область p-типа проводимости и p-n переход большой плоскости (отсюда название).

Вывод от p-области называется анодом, а вывод от n-области – катодом (смотрите рисунок

28).


А

а к це п то р н а я

п р и м е с ь

 

 

база

P

кристаллодерж а те ль

n

 

К

 

Р ис. 2 8

 

Большая плоскость p-n перехода плоскостных диодов позволяет им работать при больших прямых токах, но за счёт большой барьерной ёмкости они будут низкочастотными.

Точечные диоды.

 

А I б а за кр ис та л-

ло д е р - жа те ль

n

 

К

 

Р ис. 2 9

 

К базе точечного диода подводят вольфрамовую проволоку, легированную атомами акцептор- ной примеси, и через неё пропускают импульсы тока силой до 1А. В точке разогрева атомы ак- цепторной примеси переходят в базу, образуя p-область (смотрите рисунок 30).

Вольфрамовая игла

 

Область p-типа

 

Область n-типа

 

 

P

 

n

 

Р ис. 3 0

 

Получается p-n переход очень малой площади. За счёт этого точечные диоды будут высокоча- стотными, но могут работать лишь на малых прямых токах (десятки миллиампер). Микросплавные диоды.


Их получают путём сплавления микрокристаллов полупроводников p- и n- типа проводимо- сти. По своему характеру микросплавные диоды будут плоскостные, а по своим параметрам – точечные.



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 520; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.0.25 (0.057 с.)