Классификация и маркировка транзисторов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация и маркировка транзисторов



Устройство биполярных транзисторов

Принцип действия биполярных транзисторов

1) Классификация и маркировка транзисторов. Транзистором называется полупроводни- ковый преобразовательный прибор, имеющий не менее трёх выводов и способный усили- вать мощность. Классификация транзисторов производится по следующим признакам:

· По материалу полупроводника – обычно германиевые или кремниевые;

· По типу проводимости областей (только биполярные транзисторы): с прямой проводимо- стью (p-n-p - структура) или с обратной проводимостью (n-p-n - структура);

· По принципу действия транзисторы подразделяются на биполярные и полевые (униполяр- ные);

· По частотным свойствам; НЧ (<3 МГц);

СрЧ (3÷30 МГц);

ВЧ и СВЧ (>30 МГц);


· По мощности. Маломощные транзисторы ММ (<0,3 Вт), средней мощности СрМ (0,3÷3

Вт), мощные (>3 Вт).

Маркировка.

Г Т - 313 А

 

К П - 103 Л

 

I II - III IV

 

Рис. 59

I – материал полупроводника: Г – германий, К – кремний.

II – тип транзистора по принципу действия: Т – биполярные, П – полевые.

III – три или четыре цифры – группа транзисторов по электрическим параметрам. Первая циф- ра показывает частотные свойства и мощность транзистора в соответствии с ниже приведён- ной таблицей.

Таблица 1

 

 

IV – модификация транзистора в 3-й группе.

2) Устройство биполярных транзисторов. Основой биполярного транзистора является кри- сталл полупроводника p-типа или n-типа проводимости, который также как и вывод от него называется базой.

Диффузией примеси или сплавлением с двух сторон от базы образуются области с противопо- ложным типом проводимости, нежели база.

n-p-n p-n-p


 

К Э К Э


N-p-n

Б К


P-n-p

Б К


 

 


 

 

Рис. 60


Э Э

Рис. 61


 

Область, имеющая бóльшую площадь p-n перехода, и вывод от неё называют коллектором. Область, имеющая меньшую площадь p-n перехода, и вывод от неё называют эмиттером.

p-n переход между коллектором и базой называют коллекторным переходом, а между эмитте- ром и базой – эмиттерным переходом.

Направление стрелки в транзисторе показывает направление протекающего тока. Основной особенностью устройства биполярных транзисторов является неравномерность концентрации основных носителей зарядов в эмиттере, базе и коллекторе. В эмиттере концентрация носи- телей заряда максимальная. В коллекторе – несколько меньше, чем в эмиттере. В базе – во много раз меньше, чем в эмиттере и коллекторе (рисунок 62).

 

Э Б К Р ис. 6 2


3) Принцип действия биполярных транзисторов. При работе транзистора в усилительном режиме эмиттерный переход открыт, а коллекторный – закрыт. Это достигается соответствую- щим включением источников питания.


Iэ Э -

-

Uвх -


+ + К

- -


N p n Rн

Еэ Ек

Б

 

Рис. 63

Так как эмиттерный переход открыт, то через него будет протекать ток эмиттера, вызванный переходом электронов из эмиттера в базу и переходом дырок из базы в эмиттер. Следователь- но, ток эмиттера будет иметь две составляющие – электронную и дырочную. Эффективность эмиттера оценивается коэффициентом инжекции:


= е Iэ.п


(0,999)


Iэ = Iэ.п. + Iэ.р.

Инжекцией зарядов называется переход носителей зарядов из области, где они были основны- ми в область, где они становятся неосновными. В базе электроны рекомбинируют, а их кон- центрация в базе пополняется от «+» источника Еэ, за счёт чего в цепи базы будет протекать очень малый ток. Оставшиеся электроны, не успевшие рекомбинировать в базе, под ускоряю- щим действием поля закрытого коллекторного перехода как неосновные носители будут пере- ходить в коллектор, образуя ток коллектора. Переход носителей зарядов из области, где они были не основными, в область, где они становятся основными, называется экстракцией заря- дов. Степень рекомбинации носителей зарядов в базе оценивается коэффициентом перехода носителей зарядов δ:

d= . п.

. п.

Основное соотношение токов в транзисторе:

Iэ = Iк + Iб

d×g= . п. × . п = . п. =a

× . п.

α – коэффициент передачи тока транзистора или коэффициент усиления по току:

Iк = α ∙ Iэ

Дырки из коллектора как неосновные носители зарядов будут переходить в базу, образуя обратный ток коллектора Iкбо.

Iк = α ∙ Iэ + Iкбо

Из трёх выводов транзистора на один подаётся входной сигнал, со второго – снимается вы- ходной сигнал, а третий вывод является общим для входной и выходной цепи. Таким образом, рассмотренная выше схема получила название схемы с общей базой.

Iэ VT1 Iк

 

Uвх Rн

 

Еэ Ек

 

 


 

 

Iвх = Iэ


Рис. 64


Iвых = Iк


Uвх = Uбэ

Uвых = Uбк

Напряжение в транзисторных схемах обозначается двумя индексами в зависимости от того, между какими выводами транзистора эти напряжения измеряются.

 

IэT =D

 

Iэo

 

Рис. 65 t

Так как все токи и напряжения в транзисторе, помимо постоянной составляющей имеют ещё и переменную составляющую, то её можно представить как приращение постоянной состав- ляющей и при определении любых параметров схемы пользоваться либо переменной состав- ляющей токов и напряжений, либо приращением постоянной составляющей.

 

=

,

=,

где Iк, Iэ – переменные составляющие коллекторного и эмиттерного тока, ΔIк, ΔIэ – постоянные составляющие.

Схемы включения биполярных транзисторов

Схемы включения транзисторов получили своё название в зависимости от того, какой из вы-

водов транзисторов будет являться общим для входной и выходной цепи.

Схема включения с общей базой ОБ

Схема включения с общим эмиттером ОЭ

Схема включения с общим коллектором ОК

Усилительные свойства биполярного транзистора.

1) Схема включения с общей базой (смотрите рисунок 64). Любая схема включения транзи- стора характеризуется двумя основными показателями:

- коэффициент усиления по току Iвых/Iвх (для схемы с общей базой Iвых/Iвх=Iк/Iэ=α [α<1])

- входное сопротивление Rвхб=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и составляет десятки Ом, так как вход- ная цепь транзистора при этом представляет собой открытый эмиттерный переход транзисто- ра. Недостатки схемы с общей базой:

· Схема не усиливает ток α<1

· Малое входное сопротивление

· Два разных источника напряжения для питания. Достоинства – хорошие температурные и частотные свойства.

2) Схема включения с общим эмиттером. Эта схема, изображенная на рисунке 66, являет- ся наиболее распространённой, так как она даёт наибольшее усиление по мощности.


 

Uвх


VT1


 

 

Iвых


 


Iвх


 

 

Еб Ек


 

 


 

Iвх = Iб Iвых = Iк Uвх = Uбэ Uвых = Uкэ


Рис. 66


β = Iвых / Iвх = Iк / Iб (n: 10÷100)

Rвх.э = Uвх / Iвх = Uбэ / Iб [Ом] (n: 100÷1000)

Коэффициент усиления по току такого каскада представляет собой отношение амплитуд (или действующих значений) выходного и входного переменного тока, то есть переменных состав- ляющих токов коллектора и базы. Поскольку ток коллектора в десятки раз больше тока базы, то коэффициент усиления по току составляет десятки единиц.

Коэффициент усиления каскада по напряжению равен отношению амплитудных или действую- щих значений выходного и входного переменного напряжения. Входным является переменное напряжение база - эмиттер Uбэ, а выходным - переменное напряжение на резисторе нагрузки Rн или, что то же самое, между коллектором и эмиттером - Uкэ:

Напряжение база - эмиттер не превышает десятых долей вольта, а выходное напряжение при достаточном сопротивлении резистора нагрузки и напряжении источника Ек достигает еди- ниц, а в некоторых случаях и десятков вольт. Поэтому коэффициент усиления каскада по напряжению имеет значение от десятков до сотен. Отсюда следует, что коэффициент усиле- ния каскада по мощности получается равным сотням, или тысячам, или даже десяткам ты- сяч. Этот коэффициент представляет собой отношение выходной мощности к входной. Каж- дая из этих мощностей определяется половиной произведения амплитуд соответствующих то- ков и напряжений. Входное сопротивление схемы с общим эмиттером мало (от 100 до 1000

Ом). Каскад по схеме ОЭ при усилении переворачивает фазу напряжения, т. е. между выход- ным и входным напряжением имеется фазовый сдвиг 180°.

Достоинства схемы с общим эмиттером:

· Большой коэффициент усиления по току

· Бóльшее, чем у схемы с общей базой, входное сопротивление

· Для питания схемы требуются два однополярных источника, что позволяет на практике обходиться одним источником питания.

Недостатки: худшие, чем у схемы с общей базой, температурные и частотные свойства. Одна- ко за счёт преимуществ схема с ОЭ применяется наиболее часто.



Поделиться:


Последнее изменение этой страницы: 2016-09-05; просмотров: 296; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.192.3 (0.019 с.)