Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Декомпозиция в теории системСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В общей теории систем доказано, что большинство систем могут быть декомпозированы на базовые представления подсистем. К ним относят: последовательное (каскадное) соединение элементов, параллельное соединение элементов, соединение с помощью обратной связи. Проблема проведения декомпозиции состоит в том, что в сложных системах отсутствует однозначное соответствие между законом функционирования подсистем и алгоритмом, его реализующим. Поэтому осуществляется формирование нескольких вариантов (или одного варианта, если система отображена в виде иерархической структуры) декомпозиции системы. 11) АГРЕГИРОВАНИЕ [aggregation, aggregation problem] — объединение, укрупнение показателей по какому-либо признаку. С математической точки зрения А. рассматривается как преобразование модели в модель с меньшим числом переменных и / или ограничений — агрегированную модель, дающую приближенное (по сравнению с исходным) описание изучаемого процесса или объекта. Его сущность — в соединении однородных элементов в более крупные. Среди способов А. сложение показателей, представление группы агрегируемых показателей через их среднюю, использование различных взвешивающих коэффициентов (см. Вес), баллов (см. Шкалы) и т. д. Процесс, обратный к А., называется дезагрегированием, реже — разагрегированием, разукрупнением. Некоторыми теоретиками термин “агрегирование” понимается и как переход от микроэкономического к макроэкономическому взгляду на изучаемые экономические явления. В экономико-математических моделях А. необходимо потому, что ни одна модель не в состоянии вместить всего многообразия реально существующих в экономике продуктов, ресурсов, связей. Даже крупноразмерные модели, насчитывающие десятки тысяч показателей, неизбежно являются продуктом агрегирования. В процессе управления при переходе от низшей ступени к высшей показатели агрегируются, а число их уменьшается. Но при этом часть информации теряется (при сведении воедино заказов на материалы, напр., уже неизвестно, каких именно марок и размеров они нужны каждому заказчику) и приходится вести расчеты приближенно, на основании статистических закономерностей. Поэтому всегда необходимо сопоставлять выгоду от сокращения расчетов с ущербом, который наносится потерей части информации. Особенно затруднено А. в динамических моделях, поскольку с течением времени меняется соотношение элементов, входящих в укрупненную группу (возникает “ структурная неоднородность ”). Расхождение между результатами исходной задачи и результатами агрегированной задачи называется ошибкой А. Уменьшение ошибки А. — один из основных критериев, применяемых в теории оптимального агрегирования, разработанной Л. Гурвицем, Э. Маленво, У. Фишером и Дж. Чипмэном. А. имеет большое значение в методе межотраслевого баланса (МОБ), где оно предполагает объединение различных производств в отрасли, продуктов — в обобщенные продукты и укрупнение, таким образом, показателей балансовых расчетов. МОБ обычно оперирует “ чистыми отраслями ”, т. е. условными отраслями, каждая из которых производит и передает другим отраслям один агрегированный продукт. Количество их в модели ограничивается вычислительными возможностями и некоторыми обстоятельствами математического характера, однако, в принципе, чем больше детализация МОБ, тем лучше он отражает действительность, тем точнее расчеты по нему. А. в МОБ возможно двух типов — вертикальное и горизонтальное. Первое означает объединение продукции по технологической цепочке. Например, в соответствии с этим принципом в одну группу могут быть объединены железная руда, чугун, сталь, прокат (тогда отрасль дает потребителям один продукт — прокат), в другую — пряжа, суровая ткань, готовая ткань, в третью — целлюлоза, бумажное производство. При этом все показатели (прежде всего затраты) относятся на избранную единицу агрегированного продукта (в данных примерах — это т готового проката, 1 млн кв. м готовой ткани, т бумаги). Выбрать правильное объединение сложно: сталь может отпускаться потребителям (для литейных производств) не в виде проката, а в виде слитков; целлюлоза может поступать не только на бумажные комбинаты, но и на заводы искусственного волокна, где из нее делают вискозную пряжу, и т. д. При горизонтальном А. в одну группу объединяются, напр., продукты, сходные между собой либо по экономическому назначению (различные виды зерна, топлива), либо по техническим условиям производства. Это связано, однако, с дополнительными трудностями. Логично объединить в одну группу всю электроэнергию, но структура затрат на ее производство на тепловых и гидравлических станциях в корне различна. Любой сдвиг в соотношениях внутри такой объединенной отрасли резко скажется на ее показателях, необходимых для расчета. Наиболее рациональные способы А. отраслей и продуктов определяются путем экономико-математических расчетов. Основным инструментом А. во многих экономических расчетах являются цены. 12) Классификация видов моделирования может быть проведена по разным основаниям. Модели можно различать по ряду признаков: характеру моделируемых объектов, сферам приложения, глубине моделирования. Рассмотрим 2 варианта классификации.Первый вариант классификации. По глубине моделирования методы моделирования делятся на две группы: материальное (предметное) и идеальное моделирование.Материальное моделирование основано на материальной аналогии объекта и модели. Оно осуществляется с помощью воспроизведения основных геометрических, физических или функциональных характеристик изучаемого объекта. Частным случаем материального моделирования является физическое моделирование. Частным случаем физического моделирования является аналоговое моделирование. Оно основано на аналогии явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими соотношениями.Образец аналогового моделирования – изучение механических колебаний (например, упругой балки) с помощью электрической системы, описываемой теми же дифференциальными уравнениями. Так как эксперименты с электрической системой обычно проще и дешевле, она исследуется в качестве аналога механической системы (например, при изучении колебаний мостов). 13) Принципы определяют те общие требования, которым должна удовлетворять правильно построенная модель. При рассмотрении порознь каждый из них может показаться довольно очевидным. Но совокупность взятых вместе принципов и подходов далеко не тривиальна. Многие ошибки и неудачи в практике моделирования являются прямым следствием нарушения этой методологии. Рассмотрим эти принципы.1. Адекватность. Этот принцип предусматривает соответствие модели целям исследования по уровню сложности и организации, а также соответствие реальной системе относительно выбранного множества свойств. До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему, ценность модели незначительна.Соответствие модели решаемой задаче. Модель должна строиться для решения определенного класса задач или конкретной задачи исследования системы. Попытки создания универсальной модели, нацеленной на решение большого числа разнообразных задач, приводят к такому усложнению, что она оказывается практически непригодной. Опыт показывает, что при решении каждой конкретной задачи нужно иметь свою модель, отражающую те аспекты системы, которые являются наиболее важными в данной задаче. Этот принцип связан с принципом адекватности.Упрощение при сохранении существенных свойств системы. Модель должна быть в некоторых отношениях проще прототипа - в этом смысл моделирования. Чем сложнее рассматриваемая система, тем по возможности более упрощенным должно быть ее описание, умышленно утрирующее типичные и игнорирующее менее существенные свойства. Этот принцип может быть назван принципом абстрагирования от второстепенных деталей.Соответствие между требуемой точностью результатов моделирования и сложностью модели. Модели по своей природе всегда носят приближенный характер. Возникает вопрос, каким должно быть это приближение. С одной стороны, чтобы отразить все сколько-нибудь существенные свойства, модель необходимо детализировать. С другой стороны, строить модель, приближающуюся по сложности к реальной системе, очевидно, не имеет смысла. Она не должна быть настолько сложной, чтобы нахождение решения оказалось слишком затруднительным. Компромисс между этими двумя требованиями достигается нередко путем проб и ошибок. Практическими рекомендациями по уменьшению сложности моделей являются:изменение числа переменных, достигаемое либо исключением несущественных переменных, либо их объединением. Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют агрегированием.изменение природы переменных параметров. Переменные параметры рассматриваются в качестве постоянных, дискретные - в качестве непрерывных и т.д.изменение функциональной зависимости между переменными. Нелинейная зависимость заменяется обычно линейной, дискретная функция распределения вероятностей - непрерывной;изменение ограничений (добавление, исключение или модификация). При снятии ограничений получается оптимистичное решение, при введении - пессимистичное. Варьируя ограничениями, можно найти возможные граничные значения эффективности. Такой прием часто используется для нахождения предварительных оценок эффективности решений на этапе постановки задач;ограничение точности модели. Точность результатов модели не может быть выше точности исходных данных. 14) Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Можно выделить следующие основные этапы построения моделей.1. Содержательное описание моделируемого объекта. Объекты моделирования описываются с позиций системного подхода. Исходя из цели исследования устанавливаются совокупность элементов, взаимосвязи между элементами, возможные состояния каждого элемента, существенные характеристики состояний и соотношения между ними. Например, фиксируется, что если значение одного параметра возрастает, то значение другого - убывает и т.п. Вопросы, связанные с полнотой и единственностью набора характеристик, не рассматриваются. Естественно, в таком словесном описании возможны логические противоречия, неопределенности. Это исходная естественно-научная концепция исследуемого объекта. Такое предварительное, приближенное представление системы называют концептуальной моделью. Для того чтобы содержательное описание служило хорошей основой для последующей формализации, требуется обстоятельно изучить моделируемый объект. Нередко естественное стремление ускорить разработку модели уводит исследователя от данного этапа непосредственно к решению формальных вопросов. В результате построенная без достаточного содержательного базиса модель оказывается непригодной к использованию.На этом этапе моделирования широко применяются качественные методы описания систем, знаковые и языковые модели.2. Формализация операций. Формализация сводится в общих чертах к следующему. На основе содержательного описания определяется исходное множество характеристик системы. Для выделения существенных характеристик необходим хотя бы приближенный анализ каждой из них. При проведении анализа опираются на постановку задачи и понимание природы исследуемой системы. После исключения несущественных характеристик выделяют управляемые и неуправляемые параметры и производят символизацию. Затем определяется система ограничений на значения управляемых параметров. Если ограничения не носят принципиальный характер, то ими пренебрегают.Дальнейшие действия связаны с формированием целевой функции модели. В соответствии с известными положениями выбираются показатели исхода операции и определяется примерный вид функции полезности на исходах. Если функция полезности близка к пороговой (или монотонной), то оценка эффективности решений возможна непосредственно по показателям исхода операции. В этом случае необходимо выбрать способ свертки показателей (способ перехода от множества показателей к одному обобщенному показателю) и произвести саму свертку. По свертке показателей формируются критерий эффективности и целевая функция.Если при качественном анализе вида функции полезности окажется, что ее нельзя считать пороговой (монотонной), прямая оценка эффективности решений через показатели исхода операции неправомочна. Необходимо определять функцию полезности и уже на ее основе вести формирование критерия эффективности и целевой функции.В целом замена содержательного описания формальным - это итеративный процесс.3. Проверка адекватности модели. Требование адекватности находится в противоречии с требованием простоты, и это нужно учитывать при проверке модели на адекватность. Исходный вариант модели предварительно проверяется по следующим основным аспектам:Все ли существенные параметры включены в модель?Нет ли в модели несущественных параметров?Правильно ли отражены функциональные связи между параметрами?Правильно ли определены ограничения на значения пара метров?Для проверки рекомендуется привлекать специалистов, которые не принимали участия в разработке модели. Они могут более объективно рассмотреть модель и заметить ее слабые стороны, чем ее разработчики. Такая предварительная проверка модели позволяет выявить грубые ошибки. После этого приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта. Для установления соответствия создаваемой модели оригиналу используются следующие пути:сравнение результатов моделирования с отдельными экспериментальными результатами, полученными при одинаковых условиях;использование других близких моделей;сопоставление структуры и функционирования модели с прототипом.Главным путем проверки адекватности модели исследуемому объекту выступает практика. Однако она требует накопления статистики, которая далеко не всегда бывает достаточной для получения надежных данных. Для многих моделей первые два пути приемлемы в меньшей степени. В этом случае остается один путь: заключение о подобии модели и прототипа делать на основе сопоставления их структур и реализуемых функций. Такие заключения не носят формального характера, поскольку основываются на опыте и интуиции исследователя.По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки.Корректировка модели. При корректировке модели могут уточняться существенные параметры, ограничения на значения управляемых параметров, показатели исхода операции, связи показателей исхода операции с существенными параметрами, критерий эффективности. После внесения изменений в модель вновь выполняется оценка адекватности.Оптимизация модели. Сущность оптимизации моделей состоит в их упрощении при заданном уровне адекватности. Основными показателями, по которым возможна оптимизация модели, выступают время и затраты средств для проведения исследований на ней. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Преобразование может выполняться либо с использованием математических методов, либо эвристическим путем. 15) Имитационное моделирование (ситуационное моделирование) — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности. Такую модель можно «проиграть» во времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику. Имитационное моделирование — это метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему, с которой проводятся эксперименты с целью получения информации об этой системе. Экспериментирование с моделью называют имитацией (имитация — это постижение сути явления, не прибегая к экспериментам на реальном объекте). Имитационное моделирование — это частный случай математического моделирования. Существует класс объектов, для которых по различным причинам не разработаны аналитические модели, либо не разработаны методы решения полученной модели. В этом случае аналитическая модель заменяется имитатором или имитационной моделью. Имитационным моделированием иногда называют получение частных численных решений сформулированной задачи на основе аналитических решений или с помощью численных методов[1]. <
|
||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 669; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.107.181 (0.016 с.) |