Выпуклость и вогнутость кривой. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Выпуклость и вогнутость кривой.



Точки перегиба.

Рассмотри кривую , которая является графиком однозначной, дифференцируемой функции .

Определение 1. Будем говорить, что кривая обращена выпуклостью вверх на интервале , если все точки кривой лежат ниже любой касательной, проведенной к любой точке из этого интервала.

Кривая обращена выпуклостью вниз на интервале , если все её точки лежат выше любой её касательной на .

Кривая, обращённая выпуклостью вверх, называется выпуклой, а обращённая выпуклостью вниз – вогнутой.

В этом разделе мы установим признаки, которые позволяют судить о направлении выпуклости графика на различных интервалах определения .

Теорема 1. Если кривая выпукла на .

Доказательство. Пусть . Проведём касательную к графику в точке с абсциссой . Теорема будет доказана, если все точки будут лежать ниже этой касательной. Т.е. ордината будет меньше ординаты у касательной при одном и том же значении .

Как установлено ранее, уравнение касательной в точке имеет вид:

или

.

Нас интересует знак разности , которую можно записать в виде:

.

Применяя т. Лагранжа к разности мы можем записать:

(где С лежит между и ), или

,

и к разности производных опять применим ту же теорему

, между и .

Рассмотрим теперь случай . Тогда ; т.к. и и по условию теоремы , т.е. Теорема 1 доказана.

Пусть теперь , тогда . В этом случае и , но .

Таким образом мы доказали, что и ордината касательной больше ординаты графика , а это означает, что кривая выпукла, Теорема 1 доказана.

Аналогично доказывается и Теорема 1’.

Теорема 1’. Если , то кривая вогнута на .

Геометрическая интерпретация.

есть - угла наклона касательной в точке с абсциссой . Поэтому Если убывает при возрастании .

 
 

Если же возрастает при возрастании .

Пример: установить интервалы выпуклости и вогнутости кривой.

- кривая выпукла.

- кривая вогнута.

Определение 2. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба этой кривой.

Очевидно, что в точке перегиба касательная, если она существует, пересекает кривую, т.к. с одной стороны от этой точки кривая лежит под касательной, а с другой – над нею.

Сформулируем теперь достаточные условия того, что данная точка является точкой перегиба.

Теорема 2. Пусть кривая определяется уравнением . Если , или не существует, и при переходе через меняет знак, то точка кривой с есть точка перегиба.

Доказательство. 1) при и

при .

Тогда, при кривая выпукла, а при - вогнута. Следовательно, есть точка перегиба.

2) Пусть теперь при и при , тогда при кривая вогнута, а при - выпукла. Следовательно, точка есть точка перегиба.

Пример.

(кривая Гаусса)

- нет точек перегиба

, но при не существует.

Асимптоты.

Довольно часто требуется исследовать форму кривой при неограниченном возрастании . Важным частным случаем является тот, когда исследуемая кривая при удалении её переменной точки в бесконечность (т.е. при расстояния от начала координат до этой точки) неограниченно приближается к некоторой прямой.

Определение. Прямая А называется асимптотой кривой, если расстояние от точки до этой прямой стремится к нулю.

Различают вертикальные асимптоты – т.е. параллельные OY, горизонтальные – т.е. параллельные OX и наклонные, т.е. не параллельные OY или OX.

I. Вертикальные асимптоты. Из определения следует, что если

,

то прямая есть асимптота кривой , и обратно, что если есть асимптота, то выполняется одно из написанных равенств.

Следовательно, для нахождения вертикальных асимптот нужно найти такие , чтобы при . Тогда и будет асимптотой.

Пример. , - асимптота, т.к. , .

- б.м. вертикальных асимптот, ,

т.к. при .

II. Наклонные асимптоты. Пусть имеет наклонную асимптоту

(1) .

Определим коэффициенты и . Пусть и . расстояние от до . По условию

(2)

Пусть - угол наклона к оси из ; т.к. , то

(2’) .

При этом из (2) (2’) и наоборот. С другой стороны,

и (2’) приобретает вид:

(3) .

Итак, если (1) есть асимптота, то выполняется (3) и, наоборот, если выполняется (3), то (1) – уравнение асимптоты.

Определим теперь и . Вынося за скобки, получим

Т.к. или

Зная теперь можно найти и из (3)

Итак, если есть асимптота,

(*)

Обратное также справедливо. Если существуют пределы (*), то есть асимптота. Если же хотя бы один из пределов не существует, то асимптоты не имеет.

Пример.

1) Найдём вертикальные асимптоты:

- вертикальная асимптота.

2) Ищем наклонные асимптоты:

- асимптота.

Пример. , вертикальных нет,

при ,

при асимптоты нет.

 

Общий план исследования функций

И построения графиков.

Под «исследованием функции» обычно понимается нахождение:

1) естественной области существования функции;

2) точек разрыва функции; нули функции?

3) интервалов возрастания и убывания функции;

4) точек максимума и минимума и экстремальных значений функции;

5) областей выпуклости и вогнутости графика, точек перегиба;

6) асимптот графика функции.

На основании проведённого исследования строится график. Целесообразно помечать элементы графика параллельно с исследованием.

Замечание 1. Если - чётная, т.е. достаточно исследовать и строить её график для ОДЗ, т.к. график симметричен OY.

Замечание 2. Если - нечётная, т.е. также достаточно провести исследование для . График симметричен относительно начала координат.

Замечание 3. Т.к. одни свойства функции могут определять другие, то порядок исследования можно изменять, исходя из конкретного вида исследуемой функции. Например, если непрерывна и дифференцируема и найдены точки максимума и минимума, то тем самым определены области убывания и возрастания.

Пример. Исследовать и построить её график.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-26; просмотров: 621; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.50.83 (0.029 с.)