Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Отбор объясняющих переменных методом дополнительной регрессииСодержание книги
Поиск на нашем сайте
2 принципа такого отбора: - в модели следует оставлять только значащие факторы, используя при определении значащих факторов T-тест - при отборе фактора хj в модель строится для этого фактора дополнительная регрессия xjt=b0+b1x1,t+…+bj-1xj-1,t+bj+1xj+1,t+…+vj,t и вычисляется Rj2 в модели сохраняются те факторы, у которых коэффициенты детерминации в дополнительной регрессии наименьшие, а коэффициента корреляции стремятся к максимуму
57. Эконометрические модели в виде систем линейных одновременных уравнений (СЛОУ): примеры и проблема идентификации (на примере модели спроса-предложения блага). В общем случае экономическая модель может включать в себя несколько текущих эндогенных переменных. Линейная экономическая модель в общем случае имеет спецификацию (1). Пример – модель спроса и предложения на конкурентном рынке: (2) Модель (1) называют моделью из одновременных уравнений, поскольку какие-то эндогенные переменные модели в некоторых поведенческих уравнениях могут играть роль объясняющих переменных, например, в модели (2) объясняющей эндогенной переменной в обоих уравнениях является цена р. Моделям (1) присущи 2 проблемы – проблема идентификации и проблема оценивания параметров структурной формы. Рассмотрим первую проблему на примере модели (2). Можно ли определить параметры а0, а1, b0, b1 поведенческих уравнений? Построим графики спроса и предложения.
Поясним эту мысль, составив приведенную форму (случайные остатки пока опустим) (3). Рассматривая (3), констатируем, что эта форма состоит из двух уравнений с четырьмя искомыми параметрами. Определить их однозначно нельзя. В этом и заключается неидентифицируемость обоих уравнений модели (2). Например, если (3) разрешить относительно а1 и b1: , то задаваясь любыми подходящими а0, b0 получим то или иное решение уравнений (3). Опр: Поведенческое уравнение модели (1) является идентифицируемым, если по известным коэффициентам приведенной формы модели можно определить коэффициенты данного поведенческого уравнения.
57. Эконометрические модели в виде систем линейных одновременных уравнений (СЛОУ): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса). В общем случае экономическая модель может включать в себя несколько текущих эндогенных переменных. Линейная экономическая модель в общем случае имеет спецификацию (1). Пример – модель Кейнса (2) Модель (1) называют моделью из одновременных уравнений, поскольку какие-то эндогенные переменные модели в некоторых поведенческих уравнениях могут играть роль объясняющих переменных, например, в модели (2) У объясняет С. Моделям (1) присущи 2 проблемы – проблема идентификации и проблема оценивания параметров структурной формы. Рассмотрим вторую проблему на примере модели Кейнса (2). Проблема состоит в зависимости (коррелированности) эндогенных объясняемых переменных и случайных остатков соответствующих поведенческих уравнений. Запишем приведенную форму модели (2): (3) Рассматривая второе уравнение в (3), мы констатируем, что Y является линейной функцией случайного остатка u. По теории вероятности , значение Y коррелирует со значением случайного остатка u. Следовательно, в силу наличия ненулевой ковариации в уравнениях наблюдений модели Кейнса оказывается нарушенной последняя предпосылка теоремы ГМ. Нарушение этой предпосылки порождает несостоятельность оценок параметров модели (1), вычисленных МНК, ВМНК или ОМНК. 59. Необходимое условие идентифицируемости поведенческого уравнения модели СЛОУ (правило порядка). Сверхидентифицируемость параметров поведенческого уравнения. Запишем исследуемое поведенческое уравнение модели СЛОУ в виде (1), где G – количество текущих эндогенных переменных, К – кол-во предопределенных переменных. - условие нормализации, оно означает, что в исследуемом поведенческом уравнении объясняемая эндогенная переменная выражена в явном виде через объясняющие переменные и, возможно, через другие эндогенные переменные. Поведенческое уравнение в компактной записи: . Теорема. Пусть поведенческое уравнение (1) идентифицируемо. Тогда справедливо неравенство (2), где Кi, — количество предопределенных переменных модели, входящих в i-е уравнение; Gi — количество эндогенных переменных модели, входящих в i-е уравнение модели. Неравенство (2) позволяет определить неидентифицируемое уравнение, но не позволяет определить идентифицируемое. Такое определение может дать критерий (необходимое и достаточное условие). Если имеет место неравенство , то говорят о сверхидентифицируемости i-того уравнения модели. В этой ситуации количество уравнений в системе превышает количество ее неизвестной, то есть система является переопределенной и совместной.
60. Необходимое условие идентифицируемости поведенческого уравнения модели СЛОУ (правило порядка) Рассмотрим модель СЛОУ и запишем ее исследуемое поведенческое уравнение в следующем виде: Здесь G – число текущих эндогенных (объясняемых) переменных модели; К – кол-во предопределенных переменных, в состав которых, возможно, входит 1. Например, в модели Кейнса: G =2, K=2. Равенство называется условием нормализации, оно означает, что в исследуемом поведенческом уравнении объясняемая эндогенная переменная выражена в явном виде через объясняющие переменные и, возможно, какие-то другие эндогенные переменные. Например, в модели Кейнса в поведенческом уравнении эндогенная переменная выражена в явном виде (является явной функцией от переменных Y(эндогенной) и 1). Можем записать поведенческое уравнение компактнее: , где - вектор переменных модели: эндогенных и экзогенных; - коэф. при объясняемых и объясняющих переменных. Справедлива следующая теорема: Пусть поведенческое уравнение (1) идентифицируемо. Тогда справедливо следующее неравенство: (2) Где число объясняющих переменных, входящих в данное исследуемое поведенческое уравнение. кол-во эндогенных переменных входящих в исследуемое поведенческое уравнение. Замечание: неравенство (2) позволяет определить неидентифицируемые поведенческие уравнения, но не позволяет определить идентифицируемые. Такое определение способен дать критерий идентифицируемости. Пример: простейшая модель спроса- предложения блага на конкурентном рынке. Рассмотрим первое поведенческое уравнение: 61. Критерий идентифицируемости поведенческого уравнения модели СЛОУ (правило ранга) Обратимся к записи исследуемого поведенческого уравнения модели Компактная запись: , где - вектор переменных модели: эндогенных и экзогенных; - коэф. при объясняемых и объясняющих переменных. Обычно вектор коэф-ов содержит много нулей (какое-то кол-во нулевых элементов). Данное обстоятельство позволяет представить в следующем виде ограничения, которым удовлетворяют искомые коэффициенты данного повед.ур-я. В выражении горизонтальная прямоугольная матрица, кол-во строк которой совпадает с числом априорно нулевых коэффициентов. С позиции линейной алгебры ограничения (1) на параметры повед.ур-я являются системой линейных однородных ур-ний.
|
|||||||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 430; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.255.196 (0.009 с.) |