Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
С фазным ротором с помощью реостатов в цепи ротора↑ ⇐ ПредыдущаяСтр 3 из 3 Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Для регулирования вращения асинхронного двигателя с фазным ротором (АДФ) применения все рассмотренные способы. Но практически из них находит применение лишь способ изменения скорости с помощью реактора насыщения. В основном же для регулирования частоты вращения АДФ используются способы, основанные на воздействии на вторичную цепь. Существует два способа: 1) включение в цепь ротора реостата, 2) введение в цепь ротора добавочной ЭДС частоты скольжения. Рассмотрим первый способ. Регулирование частоты вращения АДФ можно осуществить по схеме, аналогичной, рассмотренной выше схем пуска (реостатный пуск). Однако в данном случае реостат рассчитывается на длительную работу. Известно, что включение в цепь ротора добавочного сопротивления приводит к смещению Мm в сторону больших скольжений (рис.2.39). В данном случае при двигатель переходит с одной характеристики на другую, (то есть из точки 1 в точку 2 и т.д.) при этом S увеличивается, а частота уменьшается: . Определим величину добавочного сопротивления в цепи ротора при : , следовательно, . Способ неэкономичен, так как связан с большими потерями в цепи ротора.
Особые режимы работы и виды асинхронных машин Асинхронный генератор Теоретически скольжение АМ в режиме генератора может изменяться в пределах . Для осуществления этого режима работа АМ включается в сеть переменного тока и вращается посторонним двигателем частотой вращения n>n1 в сторону вращения поля. Перед включением АМ генератором ее следует раскрутить в сторону вращения поля до частоты n ≈ n1. Так как в генераторном режиме , то активная составляющая вторичного тока изменяет свой знак по сравнению с двигательным режимом , следовательно, меняет знак и электромагнитный момент . Момент становится тормозным. Реактивная составляющая вторичного тока не меняет знак , в результате, можно построить векторную диаграмму асинхронного генератора (рис.2.40), имея виду, что . Из векторной диаграммы следует, что активная составляющая первичного тока , так как , следовательно, P1=m1I1U1 . Таким образом, в отличие от АД, асинхронный генератор не потребляет из сети активную мощность, а отдает ее в сеть, преобразуя механическую мощность с вала в электрическую. Об этом также свидетельствует изменение знака сопротивления , включаемое во вторичную цепь схемы замещения АМ, приведенной к работе трансформатором. Это сопротивление становится отрицательным, следовательно, изменит знак и мощность, выделяемая в этом сопротивлении , что эквивалентно механической мощности . Что касается реактивных составляющих первичного тока и первичной мощности, то они не меняют своего знака по сравнению с двигательным режимом , Q1=m1 I1U1 . Таким образом, асинхронный генератор (АГ), как и АД, потребляет реактивный ток и реактивную мощность из сети. Следовательно, АГ может работать лишь на сеть, на которую одновременно работают источники, вырабатывающие реактивную мощность (СГ, конденсаторы). Это существенный недостаток АГ и он применяется относительно редко. Этот режим используется как побочный при использовании АД. Изобразим энергетическую диаграмму АГ (рис.2.41). Режиму АГ соответствует нижняя часть круговой диаграммы. Рассмотрим работу АГ в автономном режиме (рис. 2.42). В этом случае к зажимам АМ подключается батарея конденсаторов. В этом случае АГ самовозбуждается, причем процесс самовозбуждения аналогичен процессу в генераторе постоянного тока с самовозбуждением (рис. 2.43). Условия самовозбуждения – наличие остаточного потока ротора. При вращении ротора наводит в обмотке ротора , под действием которой протекает ток , который является одновременно намагничивающим током АГ.
Он вызывает увеличение ЭДС до значения , что вызывает дальнейшее увеличение тока и т.д. Самовозбуждение идет пока >Uc=Icxc и прекращается в точке А, в которой наступает равенство .
2.8.2. Режим противовключения (электромагнитного тормоза)
В этом режиме ротор АМ, подключенный к сети вращается в сторону, противоположную вращению поля, следовательно, частоте вращения ротора n<0, а скольжение . Вращение осуществляется за счет механической энергии внешнего приводного механизма. Теоретически скольжение изменяется в пределах . На практике обычно . В режиме противовключения активная и реактивная составляющие вторичного тока имеют те же знаки, что и в двигательном режиме. В режиме противовключения АМ развивает положительный электромагнитный момент, действующий в направлении поля, однако он является тормозящим, т.к. действует встречно по отношению к вращению ротора. С другой стороны к ротору приложен внешний вращающий момент и таким образом машина получает механическую мощность с вала. Об этом свидетельствует изменение знака воображаемого сопротивления , включенного во вторичную цепь схемы замещения АМ, приведенной к работе трансформатором. Это сопротивление становится отрицательным. Отрицательной оказывается и выделенная в нем электрическая мощность , что является эквивалентом мощности механической. Таким образом, АМ в режиме противовключения потребляет мощность с двух сторон: электрическую со стороны сети и механическую со стороны вала, и вся эта мощность расходуется на потери в машине и в основном на покрытие электрических потерь в обмотке ротора. Полезной мощности АМ в этом режиме не развивает. В связи с этим режим электромагнитного тормоза является самым тяжелым в тепловом отношении. В данном случае электромагнитная мощность, получаемая от сети, переводится на ротор, частично покрывая электрические потери в роторе. Другая часть потерь покрывается за счет механической мощности с вала. В соответствии с этим изобразим энергетическую (рис. 2.44) и векторную (рис. 2.45) диаграмму АМ. В этом режиме сопротивление мало, поэтому вторичный ток и угол значительны. При этом первичный ток и угол также велики. Это подтверждает, что режим противовключения является тяжелым в тепловом отношении. Режим электромагнитного тормоза применяется для торможения и остановки АД и приводимых им в движение механизмов. Это осуществляется путем изменения направления вращения поля за счет переключения двух любых питающих проводов (фаз) обмотки статора. Механическая мощность развивается за счет вращения по инерции масс ротора и присоединенного к нему механизма при уменьшении частоты вращения. При n=0 машина отключается от сети. При осуществлении реверса отключение не происходит.
В случае АДФ, в процессе осуществления режима противовключения, в цепь ротора включают добавочные сопротивления (тормозной режим становится устойчивым).
|
||||
Последнее изменение этой страницы: 2016-08-26; просмотров: 591; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.93.14 (0.009 с.) |