Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Постэмбриональный период онтогенеза. Основные процессы: рост, формирование дефинитивных структур, половое созревание, репродукция, старение.

Поиск

Постнатальный онтогенез - период развития организма от момента рождения до смерти. Он объединяет две стадии: а) стадию раннего постнатального онтогенеза; б) стадию позднего постнатального онтогенеза. Ранний постнатальный онтогенез начинается с рождения организма и заканчивается наступлением структурно-функциональной зрелости всех систем органов, включая половую систему. Продолжительность его у человека составляет 13-16 лет. Ранний постнатальный онтогенез может включать основные процессы органогенеза, дифференцировки и роста (например, у кенгуру) или же только рост, а также дифференцировку позднее созревающих органов (половые железы, вторичные половые признаки). У многих животных в постэмбриональном развитии имеет место метаморфоз. Поздний постнатальный онтогенез включает зрелое состояние, старение и смерть. Постэмбриональное развитие характеризуется: 1) интенсивным ростом; 2) установлением дефинитивных (окончательных) пропорций тела; 3) постепенным переходом систем органов к функционированию в режиме, свойственном зрелому организму.

Рост - это увеличение массы и линейных размеров особи (организма) за счёт увеличения массы, но главным образом количества клеток, а также неклеточных образований. Для описания роста используют кривые роста (изменение массы или длины тела в течение онтогенеза), показатели абсолютного и относительного прироста за определённый промежуток времени, удельную скорость роста.

Рост особи характеризуется либо изометрией - равномерным ростом частей и органов тела, либо аллометрией - неравномерным ростом частей тела. Аллометрия бывает отрицательной (например, замедленный рост головы по отношению к телу у ребёнка) и положительной (например, ускоренный рост рогов у жвачных). Скорость роста с возрастом, как правило, снижается. Животные с неопределённым ростом растут в течение всей жизни (моллюски, ракообразные, рыбы, земноводные). У животных с определённым ростом к определённому возрасту рост прекращается (насекомые, птицы, млекопитающие). Однако резкой грани между определённым и неопределённым ростом не существует. Человек, млекопитающие, птицы после прекращения роста всё же могут несколько увеличиваться в размерах. Процессы роста контролируются генотипом, одновременно завися от условий среды. Рост человека, обусловливаясь сочетанием наследственных и средовых факторов, обнаруживает изменчивость (возрастную, половую, групповую, внутригрупповую или индивидуальную и эпохальную). На рост и развитие организма его генотип может оказывать также опосредованное влияние через синтез биологически активных веществ -гормонов. Это - нейросекреты, вырабатываемые нервными клетками, гормоны эндокринных желез. Гормоны могут влиять как на обменные процессы (биосинтез), так и на экспрессию других генов, в свою очередь оказывающих влияние на рост. Между всеми эндокринными железами существует взаимосвязь, регулируемая по принципу обратных связей. Так, гормоны гипофиза влияют на эндокринную функцию половых желез, щитовидной железы и надпочечников. Гипофиз вырабатывает соматотропный гормон, недостаток которого приводит к карликовости - нанизму, а избыток - к гигантизму.

4-ая стадия эмбриогенеза - стадия дефинитивного (окончательного) органогенеза, на которой происходит формирование постоянных органов. Очень сложные процессы, протекающие на этой завершающей стадии эмбриогенеза, являются объектом изучения частной эмбриологии. В этом разделе мы ограничимся рассмотрением «судьбы» первичных органов зародыша.

Из эктодермы развиваются: эпидермис кожи и его производные -перья, волосы, ногти, кожные и молочные железы, нервная система. Передний (расширенный) отдел нервной трубки преобразуется в головной мозг, остальная её часть (передний и средний отделы) - в спинной мозг. Энтодерма даёт начало внутренней выстилке пищеварительной и дыхательной систем, секретирующим клеткам пищеварительных желез. Сомиты претерпевают следующие преобразования: дерматом формирует дерму (глубокий слой кожи); склеротом участвует в образовании скелета (хрящевого, затем костного); миотом даёт начало скелетной мускулатуре. Из нефротома развиваются органы мочевыделения.

Несегментированная мезодерма (спланхнотом) даёт начало плевре, брюшине, перикарду, участвует в развитии сердечно-сосудистой и лимфатической систем.

Половое созревание - процесс формирования воспроизводящей функции организма человека, проявляющийся постепенным развитием вторичных половых признаков и завершающийся наступлением половой зрелости. У человека период полового созревания называют переходным, или пубертатным, его продолжительность составляет в среднем около 5 лет. Возрастные рамки полового созревания подвержены индивидуальным колебаниям (у девочек от 8 — 10 до 16 — 17 лет, у мальчиков от 10 — 12 до 19 — 20 лет). Появление вторичных половых признаков у девочек в период от 8 до 10 лет, у мальчиков от 10 до 12 лет называют ранним половым созреванием (оно связано обычно с конституциональными факторами).

Важный признак пубертатного развития – установление регулярной активности гонад которая проявляется у девушек менструациями, а у юношей – эякуляциями. Внутрисекреторная активность гонад у обоих полов проявляется также фазовыми изменениями темпов роста отдельных сегментов скелета, в результате чего устанавливаются дефинитивные (структур) пропорции тела и формируются вторичные половые признаки. Вторичные половые признаки включают главным образом изменения кожи (в частности, мошонки) и ее дериватов (именно в период созревания происходит рост гривы у льва, развитие так называемой половой кожи у обезьян, рогов у оленя). Первыми признаками пубертатного развития у мальчиков наряду с увеличением размеров яичек и ускорением тотального роста являются интенсификация оволосения и изменения мошонки. Средний возрастной период появления отдельных признаков у 50% обследованных составлял: мутация голоса – 12 лет 3,5 мес, оволосение лобка – 12 лет 9,5 мес, увеличение Щитовидного хряща гортани – 13 лет 3,5 мес, оволосение подмышечных впадин – 13 лет 9,5 мес и оволосение лица – 14 лет 2 мес. Изучая продолжительность и темпы формирования вторичных половых признаков, В. Г. СидамонЭристави нашла, что скорость развития отдельных признаков полового созревания имеет свои «пики».

Репродуктивная функция человека – воспроизведение себе подобных. Способность человека как вида передавать одну половину генетической информации будущего поколения от отца к матери обеспечивается физиологическими особенностями репродуктивной функции мужского организма. Репродуктивная функция женского организма обеспечивает процесс фертилизации, внутриутробное развитие плода, рождение ребенка и его вскармливание грудным молоком. Отличительной особенностью репродуктивной функции человека от других физиологических функций организма является то, что ее нормальное функционирование проводит к слиянию половых клеток мужского и женского организмов в процессе половой репродукции. Ооциты и сперматозоиды называются женскими и мужскими половыми клетками, или гаметами. Мужские и женские гаметы в зрелой форме содержат гаплоидное число хромосом, т. е. половину нормального числа. Гаплоидное число хромосом в гаметах формируется в процессе сперматогенеза и оогенеза (рис. 16.1). В мужском организме мейотическое деление сперматогенных клеток происходит постоянно на протяжении всей жизни после начала периода полового созревания (пубертатный период). Напротив, в ооците гаплоидное число хромосом образуется непосредственно перед овуляцией яйцеклетки из фолликула. В результате способности ооцита и сперматозоида соединяться друг с другом во время оплодотворения в женском половом тракте происходит образование зиготы. Этот процесс называется фертилизацией. В зиготе содержится диплоидное число хромосом, как в любой соматической клетке организма человека и животных. Две хромосомы из диплоидного числа в зиготе, а именно половые Х- и Y-хромосомы, обусловливают мужской или женский пол будущей особи в новом поколении. Женская половая клетка содержит только Х-хромосомы, а мужская — Х- и Y-хромосомы. Хромосомы заключают в себе гены, которые передают генетические особенности одного поколения другому.

Старение – это необратимый процесс постепенного угнетения основных функций организма (регенерационных, репродуктивных и др.), вследствие которого организм теряет способность поддерживать гомеостаз, противостоять стрессам, болезням и травмам, что делает гибель неизбежной.

Основные концепции в биологии развития (гипотезы преформизма и эпигенеза). Современные представления о механизмах эмбрионального развития.

Преморфизм – в этой теории онтогенез рассматривали лишь как рост расположенных в определенном пространственном порядке предсуществующих структур и частей будущего организма. В этих рамках каких-либо новообразований или преобразований структур в индивидуальном развитии не происходит. Логическое завершение идеи преформизма заключается в допущении абсурдной мысли о ≪заготовленности≫ в зиготе и даже в половых клетках прародителей структур организмов всех последующих поколений, как бы вложенных последовательно наподобие деревянных матрешек.

Эпигенез – альтернатива периморфизму. сформулирована в середине XVIII в. Ф. К. Вольфом, впервые обнаружившим новообразование нервной трубки и кишечника в ходе эмбрионального развития. Индивидуальное развитие стали связывать целиком с качественными изменениями, полагая, что структуры и части организма возникают как новообразования из бесструктурной яйцеклетки.

В XIX в. К. Бэр впервые описал яйцо млекопитающих и человека, а также зародышевые листки и обнаружил сходство плана строения зародышей различных классов позвоночных — рыб, амфибий, рептилий, птиц, млекопитающих. Он же обратил внимание на преемственность в этапах развития — от более простого к более сложному. Бэр рассматривал онтогенез не как предобразование, не как новообразование структур, а как их преобразование, что вполне согласуется с современными представлениями.

Современные представления о механизмах эмбрионального развития Пересадка эмбриональных клеток (ЭК) переживает расцвет как в плане фундаментальных исследований, так и в практическом отношении для заместительной коррекции различных патологий у человека. Пересадка ЭК и соматических клеток - альтернатива пересадкам органов и тканей. Создание банков клеток позволяет поставить методы клеточной трансплантации на поток и иметь резервы собственных замороженных клеток с момента рождения. Пересадки ЭК широко используются в практике для целей лечения наследственных, дегенеративных и иных заболеваний человека, а также делаются попытки использовать их для восполнения функций органов и тканей при их естественном истощении в ходе старения организмов. Метод пересадки ЭК - уникальный метод изучения механизмов эмбриогенеза, межклеточного взаимодействия и старения организма.

Современные методы биотехнологии позволили по новому и в массовых масштабах проводить работы с ЭК. Использование как источника клеток эмбрионального материала человека и животных все больше уступает использованию переживающих клонов клеток. В настоящее время во многих странах мира созданы банки практически для любых типов клеток, используемых в терапевтических и научных целях. В средине 90-х годов более чем в 300 центров 30 стран мира было проведено более 10000 трансплантаций только гематогенной ткани. Прогресс как в применении, так и в развитии фундаментальных исследований в области трансплантации ЭК был получен в результате привлечения внимания транснациональных корпораций к научным фундаментальным разработкам.

Во многом, механизмы эффектов трансплантированных ЭК остаются мало понятными, и часто практическое использование метода опережает научную часть разработок.

Наиболее интересным является то, что пересадка даже очень небольших объемов клеток дает выраженные эффекты, вплоть до полного купирования симптомов часто неизлечимых другими методами заболеваний.

Так, пересадка всего 3% клеточной массы печени купирует печеночную недостаточность.

Часто после пересадки наблюдается активирование собственных клеток органа, стимуляция регенерации сохранившихся клеток. Последнее связывают с выделением ЭК различных цитокинов, а также активным состоянием ЭК, включающихся в межклеточные взаимодействия с собственными клетками реципиента. В этой связи следует указать на важность в формировании такого межклеточного взаимодействия иммунной системы. Так, отечественными учеными, в т.ч. нами была подробно разработана концепция о регуляции определенными субпопуляциями Т-лимфоцитов процессов роста и регенерации самых различных типов клеток.

Исходя из этих взглядов, ЭК являются факторами запуска регенерации собственных клеток реципиента, а также сами нуждаются для нормального приживления в активной помощи данного типа клеток и в создании состояния иммунной толерантности, так как переносимые клетки все же являются генетически чужеродными для организма. Понятно с этих позиций, почему назначение после переноса ЭК больным цитокинов и факторов роста улучшает результаты, а также позволяет использовать на порядок меньшие количества переносимых ЭК.

Переносимые ЭК активно размножаются в тканях реципиентов, формируют клоны клеток, дифференцируются в функционально полноценные клетки и восполняют функции неполноценных или поврежденных клеток реципиентов, встраиваясь непосредственно в ткани реципиента и создавая там функционирующую ткань донора.

В ряде случаев ЭК сливаются, например, с миобластами реципиента, образуя гибридные клетки, восстанавливая их функцию в организме.

Важное значение имеет и выделение ЭК факторов, стимулирующих ткани и организм реципиента, к чему во многих случаях сводится биостимулирующее общее влияние ЭК.

: Критические периоды в онтогенезе человека. Аномалии и пороки развития. Классификация пороков развития. Значение нарушений частных и интегративных механизмов онтогенеза в формировании врожденных пороков развития. Тератогенез. Канцерогенез.

В процессе индивидуального развития имеются критические периоды, когда повышена чувствительность развивающегося организма к воздействию повреждающих факторов внешней и внутренней среды. Выделяют несколько критических периодов развития. Такими наиболее опасными периодами являются:

1) время развития половых клеток - овогенез и сперматогенез;

2) момент слияния половых клеток - оплодотворение;

3) имплантация зародыша (4-8-е сутки эмбриогенеза);

4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития);

5) Стадия усиленного роста головного мозга (15-20-я неделя);

6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода);

7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация;

8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов;

9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет).

Одновременно с быстрым ростом органов половой системы активизируется эмоциональная деятельность.

Пороки развития — аномалии развития, совокупность отклонений от нормального строения организма, возникающих в процессе внутриутробного или, реже, послеродового развития.

Их следует отличать от крайних вариантов нормы. Пороки развития возникают под действием разнообразных внутренних (наследственность, гормональные нарушения, биологическая неполноценность половых клеток и др.) и внешних (ионизирующее облучение, вирусная инфекция, недостаток кислорода, воздействие некоторых химических веществ, амниотические перетяжки и т.д.) факторов.

В зависимости от причины все врожденные пороки развития делят на наследственные, экзогенные (средовые) и мультифакториальные.

Наследственными называют пороки, вызванные изменением генов или хромосом в гаметах родителей, в результате чего зигота с самого возникновения несет генную, хромосомную или геномную мутацию. Генетические факторы начинают проявляться в процессе онтогенеза последовательно, путем нарушения биохимических, субклеточных, клеточных, тканевых, органных и организменных процессов. Время проявления нарушений в онтогенезе может зависеть от времени вступления в активное состояние соответствующего мутированного гена, группы генов или хромосом. Последствия генетических нарушений зависят также от масштаба и времени проявления нарушений.

Экзогенными называют пороки, возникшие под влиянием тератогенных факторов (лекарственные препараты, пищевые добавки, вирусы, промышленные яды, алкоголь, табачный дым и др.), т.е. факторов внешней среды, которые, действуя во время эмбриогенеза, нарушают развитие тканей и органов.

Поскольку средовые экзогенные факторы в конечном итоге оказывают влияние на биохимические, субклеточные и клеточные процессы, механизмы возникновения врожденных пороков развития при их действии такие же, как при генетических причинах. В результате фенотипическое проявление экзогенных и генетических пороков бывает весьма сходным, что обозначается термином фенокопия. Для выявления истинных причин возникновения пороков в каждом конкретном случае следует привлекать множество различных подходов и критериев.

Мультифакториальными называют пороки, которые развиваются под влиянием как экзогенных, так и генетических факторов. Вероятно, скорее всего бывает так, что экзогенные факторы нарушают наследственный аппарат в клетках развивающегося организма, а это приводит по цепочке ген — фермент — признак к фенокопиям. Кроме того, к этой группе относят все пороки развития, в отношении которых четко не выявлены генетические или средовые причины.

В зависимости от стадии, на которой проявляются генетические или экзогенные воздействия, все нарушения, происходящие в пренатальном онтогенезе, подразделяют на гаметопатии, бластопатии, эмбриопатии и фетопатии. Если нарушения развития на стадии зиготы (гаметопатия) или бластулы (бластопатия) очень грубые, то дальнейшее развитие, видимо, не идет и зародыш погибает. Эмбриопатии (нарушения, возникшие в период от 15 сут до 8 нед эмбрионального развития) как раз составляют основу врожденных пороков, о чем уже говорилось выше. Фетопатии (нарушения, возникшие после 10 нед эмбрионального развития) представляют собой такие патологические состояния, для которых, как правило, характерны не грубые морфологические нарушения, а отклонения общего типа: в виде снижения массы, задержки интеллектуального развития, различных функциональных нарушений. Очевидно, что наибольшее клиническое значение имеют эмбриопатии и фетопатии.

В зависимости от последовательности возникновения различают первичные и вторичные врожденные пороки. Первичные пороки обусловлены непосредственным действием тератогенного фактора, вторичные — являются осложнением первичных и всегда патогенетически с ними связаны. Выделение первичных пороков из комплекса нарушений, обнаруженных у пациента, имеет большое значение для медико-генетического прогноза, поскольку риск определяется по основному пороку.

Тератогенез - возникновение уродств в результате как ненаследственных изменений — различных нарушений зародышевого развития (слияние парных органов, например глаз; отсутствие, недоразвитие, избыточное или неправильное развитие отдельных органов и др.), так и наследственных изменений — мутаций (например, расщепление верхней губы и нёба, короткопалость. шестипалость. нарушения развития половой системы и др.). Ряд уродств удаётся воспроизвести в эксперименте и тем самым приблизиться к пониманию закономерностей их возникновения. Изучение Т. важно для медицины, систематики, селекции.

Изучение процесса канцерогенеза является ключевым моментом как для понимания природы опухолей, так и для поиска новых и эффективных методов лечения онкологических заболеваний. Канцерогенез — сложный многоэтапный процесс, ведущий к глубокой опухолевой реорганизации нормальных клеток организма. Из всех предложенных до ныне теорий канцерогенеза, мутационная теория заслуживает наибольшего внимания. Согласно этой теории, опухоли являются генетическими заболеваниями, патогенетическим субстратом которых является повреждение генетического материала клетки (точечные мутации, хромосомные аберрации и т. п.). Повреждение специфических участков ДНК приводит к нарушению механизмов контроля за пролиферацией и дифференцировкой клеток и в конце концов к возникновению опухоли.

Канцерогенные факторы:

Химические факторы

Вещества ароматической природы (полициклические и гетероциклические ароматические углеводороды, ароматические амины), некоторые металлы и пластмассы обладают выраженным канцерогенным свойством благодаря их способности реагировать с ДНК клеток, нарушая ее структуру (мутагенная активность). Канцерогенные вещества в больших количествах содержатся в продуктах горения автомобильного и авиационного топлива, в табачных смолах. При длительном контакте организма человека с этими веществами могут возникнуть такие заболевания, как рак легкого, рак толстого кишечника и др. Известны также эндогенные химические канцерогены (ароматические производные аминокислоты триптофана), вызывающие гормонально зависящие опухоли половых органов.

Физические факторы

Солнечная радиация (в первую очередь ультрафиолетовое излучение) и ионизирующее излучение также обладает высокой мутагенной активностью. Так, после аварии Чернобыльской АЭС отмечено резкое увеличение заболеваемости раком щитовидной железы у людей, проживающих в зараженной зоне. Длительное механическое или термическое раздражение тканей также является фактором повышенного риска возникновения опухолей слизистых оболочек и кожи (рак слизистой рта, рак кожи, рак пищевода).

Биологические факторы

Доказана канцерогенная активность вируса папиломы человека в развитии рака шейки матки [2], вируса гепатита В в развитии рака печени, ВИЧ — в развитии саркомы Капоши. Попадая в организм человека, вирусы активно взаимодействуют с его ДНК, что в некоторых случаях вызывает трансформацию собственных протоонкогенов человека в онкогены. Геном некоторых вирусов (ретровирусы) содержит высоко активные онкогены, активирующиеся после включения ДНК вируса в ДНК клеток человека.

Наследственная предрасположенность

Изучено более 200 наследственных заболеваний, характеризующихся повышенным риском возникновения опухолей различной локализации. Развитие некоторых типов опухолей связывают с врожденным дефектом системы репарации ДНК (пигментная ксеродерма)

Вопрос № 19: Понятие о гомеостазе. Регенерация как свойство живого к самообновлению и восстановлению. Физиологическая и репаративная регенерация. Биологическое и медицинское значение проблемы регенерации.

Г ОМЕОСТАЗ - свойство живого организма сохранять относительное динамичное постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотическом давлении, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.

Основные компоненты гомеостаза можно разделить на 3 группы:

А. МАТЕРИАЛЫ, ОБЕСПЕЧИВАЮЩИЕ КЛЕТОЧНЫЕ ПОТРЕБНОСТИ:

1. Вещества, необходимые для образования энергии, для роста и восстановления - глюкоза, белки, жиры.

2. Вода.

3. NaCl, Ca и другие неорганические вещества.

4. Кислород.

5. Внутренняя секреция.

Б. ОКРУЖАЮЩИЕ ФАКТОРЫ, ВЛИЯЮЩИЕ НА КЛЕТОЧНУЮ АКТИВНОСТЬ:

1. Осмотическое давление.

2. Температура.

3. Концентрация водородных ионов (рН).

В. МЕХАНИЗМЫ, ОБЕСПЕЧИВАЮЩИЕ СТРУКТУРНОЕ И ФУНКЦИОНАЛЬНОЕ

ЕДИНСТВО:

1. Наследственность.

2. Регенерация.

3. Иммунобиологическая реактивность.

Регенерация - Восстановление утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части (что соответствует вегетативному размножению); способность к Р. - универсальное свойство всего живого; как правило, Р. происходит за счет недифференцированных клеток (у низших организмов может происходить и за счет дифференцированных клеток, но после их дедифференцировки); выделяют репаративную Р. (образование новых структур вместо погибших), физиологическую Р. (образование новых структур вместо утраченных в процессе нормальной жизнедеятельности - обновление клеток крови и т.п.), реституцию (замена утраченной части растения) и репродукцию (замена повреждения на др. участке растения - например, развитие боковых побегов при отрезании верхушечных);

Восстановление исходной массы органа после его повреждения осу­ществляется различными путями. В одних случаях сохранившаяся часть органа остается неизмененной или малоизмененной, а недостающая его часть отрастает от раневой по­верхности в виде четко отграничен­ного регенерата. Такой способ вос­становления утраченной части орга­на называют эпиморфозом. В других случаях происходит перестройка оставшейся части органа, в про­цессе которой он постепенно приоб­ретает исходные форму и размеры. Этот вариант процесса регенерации называют морфаллаксисом. Чаще эпиморфоз и морфаллаксис встречаются в раз­личных сочетаниях. Наблюдая уве­личение размеров органа после его повреждения, прежде говорили о его компенсаторной гипертрофии. Цитологический анализ этого процесса показал, что в его основе лежит размножение клеток, т. е. регенераторная реакция. В связи с этим процесс получил название «регенерацнонная гипертрофия».

Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративная регенерация

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

Значение Р. для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний и функциональной активности в меняющихся условиях среды, а также восстановление и компенсация функций, нарушенных в результате действия различных патогенных факте. Физиологическая и репаративная Р. является структурной основой всего разнообразия проявлений жизнедеятельности организма в норме и патологии.

Вопрос № 20:Репаративная регенерация и способы её осуществления. Проявление регенерационной способности в филогенезе. Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.Репаративная регенера­ция широко распространена, но способность к ней выражена неодина­ково у различных животных. Хорошо выражена репаративная регенерация у некоторых кишечно­полостных и ресничных червей, в связи с чем гидры и планарии стали классическими объектами для изучения этого явления. Ракообразные восстанавливают утраченные конечности, антенны, глаза. Хвостатые амфибии и личинки бесхвостых восстанавливают конечности, хвост и не­которые другие органы. У млекопитающих и человека регенерация раз­личных тканей выражена в неодинаковой степени. Эпителиальная ткань в покровах кожи, слизистых оболочек, серозных покровов обладает вы­сокой способностью к репаративной регенерации. Хорошими регенера­ционными свойствами обладает соединительная, мышечная и костная ткань. Хрящевая ткань регенерирует слабо.

Восстановление органа происходит только тогда, когда сохраняется хотя бы остаток этого органа и не потеряны коррелятивные связи со всем организмом. Конечности аксолотля и тритона способны к регенера­ции при ампутации на любом уровне. Но если удален и пояс конечно­стей, регенерации не происходит. Ампутированная мышца у птиц и гры­зунов способна к восстановлению, если осталась хотя бы небольшая культя.Для регенерации наружных органов необходима открытая раненая поверхность. В опытах на хвостатых амфибиях, когда рану закрывали кожным лоскутом, отрастания ампутированных органов не происходило.Формы и способы репаративной регенерации:Различают регенерацию типичную, или гомоморфоз, и атипичную, или гетероморфоз. При гомоморфозе восстанавливается такой же орган, как и утраченный. При гетероморфозе восстановленные органы отличаются от типичных.В ряде случаев при гетероморфозе вместо прежнего органа развивает­ся совершенно иной. Например, у рака иногда на месте удаленного глаза вырастает видоизмененная антенна. При гетероморфозе отме­чено развитие атавистических органов. Так, на регенерирующем хвосте ящерицы появляются чешуи более древнего типа.Иногда восстанавливается большее число органов, чем их бывает В норме: у планарин может образоваться несколько головных концов, у ам­фибии - лишние конечности и т. д.Изучение гетероморфозов важно для выяснения факторов, влияющих на регенерацию, что необходимо для управления процессом восстановле­ния утраченных органов.Восстановление утраченных органов осуществляется путем эпимор­фоза, морфаллаксиса и эндоморфоза.Эпиморфоз - отрастание утраченного органа от раневой поверхности. Процесс регенерации при этом начинается с рассасывания тканей, при­легающих к ране, и интенсивного размножения клеток, из которых обра­зуется регенерационный зачаток. Дальнейшее размножение клеток при­водит к увеличению зачатка, а дифференцировка клеток - к формиро­ванию органа. К эпиморфозу примыкает рубцевание, при котором про­исходит закрытие раны, но без восстановления утраченного органа.Морфаллаксис влечет за собой перегруппировку оставшейся части ор­ганизма. Эта форма регенерации нередко связана с дальнейшим значи­тельным разрушением оставшейся части и завершается формированием из этого материала целого организма или органа. Величина новой особи или восстановленного органа оказывается сначала меньше исходной, равной лишь взятому фрагменту, но в дальнейшем увеличивается.Обычно эпиморфоз и морфаллаксис сопутствуют друг другу, но в од­них случаях преобладает первая форма, а в других - вторая. Так, при отрастании хвоста у ящерицы или ноги у тритона имеет место преиму­щественно эпиморфоз, а при регенерации планарий, гидры, ноги тара­кана преобладает морфаллаксис.Атипичная, неполная регенерация, характерная для большинства внут­ренних органов млекопитающих, получила название эндоморфоза, или регенерационной гипертрофии.При эндоморфозе восстанавливается не форма, а масса органа. Этот способ регенерации характерен для органов с относительно однородной структурой, у которых форма не имеет существенного значения для нормального функционирования. Регенерация по типу эндоморфоза на­чинается с заживления раны, а затем происходит увеличение оставшейся части органа за счет размножения клеток и их гипертрофии. Отрастания от раневой поверхности не происходит, поэтому восстановившийся в своих размерах орган сохраняет форму культи. Так протекает, напри­мер, регенерация печени.

Вопрос № 21: Проблема трансплантации органов и тканей. Ауто-, алло- и гетеротрансплантация. Тканевая несовместимость и пути её преодоления. Иммуногенетический гомеостаз. К разряду медицинских проблем, возникающих при трансплантации, относятся проблемы иммунологического подбора донора, подготовки пациента к операции (прежде всего, очищение крови) и проведение послеоперационной терапии, устраняющей последствия пересадки органа. Неправильный подбор донора может привести к возникновению процесса отторжения пересаженного органа иммунной системой реципиента после операции. Для недопущения возникновения процесса отторжения используются иммунноподавляющие препараты, необходимость введения которых сохраняется у всех пациентов до конца жизни. При применении данных препаратов имеются противопоказания, способные привести к смерти больного

.Группы риска при трансплантации

Главным противопоказанием при подготовке к трансплантации является наличие серьезных генетических различий донора и реципиента. В случае если ткани, принадлежащие генетически разным особям, различаются антигенами, то пересадка органа от одной такой особи к другой сопряжено с крайне высоким риском сверхострого отторжения трансплантата и его потери.

К группам риска относят онкологических больных, имеющих злокачественные новообразования с небольшим сроком после радикального лечения. При большинстве опухолей от завершения такого лечения до трансплантации должно пройти не менее 2 лет.

Противопоказана пересадка почки пациентам с острыми, активными инфекционными и воспалительными заболеваниями, а также обострениями хронических заболеваний подобного рода.

От пациентов, перенесших трансплантацию, также требуется неукоснительное соблюдение постоперационного режима и медицинских рекомендаций по неукоснительному принятию иммуноподавляющих препаратов. Изменения личности при хронических психозах, наркомании и алкоголизме, не позволяющие соблюдать предписанный режим, также относят пациента к группам риска.

Аутотрансплантация – пересадка частей в пределах одной особи. Например, аутотрансплантация кожи с неповреждённых участков на обожжённые широко применяется при тяжёлых ожогах. Аутотрансплантация костного мозга или гемопоэтических стволовых клеток после высокодозной противоопухолевой химиотерапии широко применяется при лейкозах, лимфомах и химиочувствительных злокачественных опухолях.

Аллотрансплантация, или гетерологичная трансплантация — трансплантация, при которой донором трансплантата является генетически и иммунологически другой человеческий организм.

«Алло» — (греч. allos другой, иной)- составная часть сложных слов, означающая «другой», «иной», «отличный», «измененный».

Выделяют:

близкородственную аллотрансплантацию (донором трансплантата является близкий генетический родственник, первой линии родства);

дальнеродственную аллотрансплантацию (донор является дальним генетическим родственником, второй или третьей линии родства);

неродственную аллотрансплантацию (донором является чужой человек, вообще не находящийся в генетическом родстве с реципиентом).

На сегодняшний день аллотрансплантация — преобладающий вид выполняемых трансплантаций почек, печени, сердца и лёгких, и более половины выполняемых трансплантаций костного мозга. Объясняется это тем, что далеко не у всех пациентов, являющихс



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 2479; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.189.236 (0.018 с.)