Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Погрешности теоретических моделейСодержание книги
Поиск на нашем сайте
Проблема достоверности наших представлений об окружающем мире, т.е. проблема соответствия модели объекта и реального объекта, является ключевой проблемой в теории познания. В настоящее время общепринято, что критерием истинности наших знаний является опыт. Модель адекватна объекту, если результаты теоретических исследований (расчёт) совпадают с результатами опыта (измерений) в пределах погрешности последнего. Погрешности имеют место не только при измерениях, но и при теоретическом моделировании. Для теоретических моделей, в соответствии с природой возникновения, будем различать: - погрешности, возникающие при разработке физической модели; - погрешности, возникающие при составлении математической модели; - погрешности, возникающие при анализе математической модели; - погрешности, связанные с конечным числом разрядов чисел при вычислениях. В последнем случае, например, число π в рамках символической записи как отношение длины окружности к диаметру представляет собой точное число, но попытка записать его в численном виде (π=3,14159265…) вызывает погрешность, связанную с конечным числом разрядов. Перечисленные погрешности возникают всегда. Избежать их невозможно, и их называются методическими. При измерениях методические погрешности проявляют себя как систематические. Пример: погрешности физической и математической модели маятника, возникающие при измерении периода колебаний маятника в виде тела, подвешенного на нити. Физическая модель маятника: - нить – невесома и нерастяжима; - тело – материальная точка; - трение отсутствует; - тело совершает плоское движение; - гравитационное поле – однородное (т.е. g =const во всех точках пространства, в которых находится тело); - влияние других тел и полей на движение тела отсутствует. Очевидно, что реальное тело не может быть материальной точкой, оно имеет объем и форму, в процессе движения или со временем тело деформируется. Кроме того, нить имеет массу, она обладает упругостью и также деформируется. На движение маятника влияет движение точки подвеса, обусловленное действием вибраций, всегда имеющих место. Также на движение маятника влияет сопротивление воздуха, трение в нити и способ ее крепления, внешние магнитное и электрическое поля, неоднородность гравитационного поля Земли и даже влияние гравитационного поля Луны, Солнца и окружающих тел. Перечисленные факторы, в принципе, могут быть учтены, однако сделать это достаточно трудно. Для этого потребуется привлечь почти все разделы физики. В конечном счете, учет этих факторов значительно усложнит физическую модель маятника и ее анализ. Не учет перечисленных, а также множества других, не упомянутых здесь факторов, существенно упрощает анализ, но приводит к погрешностям исследования. Математическая модель маятника: в рамках выбранной простейшей физической модели математическая модель маятника – дифференциальное уравнение движения маятника – имеет следующий вид: , (1), где L – длина нити; φ – отклонение тела от положения равновесия. При φ<<1 обычно считают, что sin φ»φ, и тогда уравнение движения записывается: .(2) Это – линейное дифференциальное уравнение, которое может быть решено точно. Данноерешение имеет вид , где . Отсюда следует, что период колебаний маятника Т 0=2p/w0 не зависит от амплитуды φ0. Однако, это решение нельзя считать точным решением задачи о колебаниях маятника, представленного простейшей физической моделью, поскольку исходное уравнение (1) было другим. Можно уточнить решение. Если разложить sin φ в ряд и учесть хотя бы первые два члена разложения, т.е. считать, что sinφ»φ+φ3/6, то решение дифференциального уравнения существенно усложнится. Приближенно его можно записать в виде , где . Отсюда следует, что в данном приближении период колебаний маятника Т =2p/w зависит от амплитуды колебаний по параболическому закону. Таким образом, погрешность математической модели (уравнение (2)), связанная с заменой sin φ на φ, приводит к погрешности результата расчета периода колебаний маятника. Оценка этой погрешности может быть получена из решения задачи во втором приближении. Проблема построения и анализа математической модели объекта исследования с заданной точностью, а также оценка погрешности расчётов в ряде случаев очень сложна. Требуется высокая математическая культура исследователя, необходим тщательный математический анализ и самой модели, и применяемых методов решения. Например, не имеет смысла требование решения уравнения (1) с точностью, существенно превышающей точность построения физической модели. В частности, в предыдущем примере нет смысла делать замену sinφ»φ+φ3/6 вместо sinφ»φ, если нить заметно деформируется или сопротивление воздуха велико. Применение ЭВМ значительно увеличило возможности построения и исследования математических моделей в технике, однако не следует думать, что совершенное знание математики, численных методов и языков программирования позволит решить любую физическую и прикладную задачу. Дело в том, что даже самые изящные и точные методы расчетов не могут исправить ошибки, допущенные при построении физической модели. Действительно, если длина L не постоянна, или если размеры тела сопоставимы с длиной нити, или трение велико и колебания маятника быстро затухают, то даже абсолютно точное решение уравнения (1) не позволит получить точное решение задачи о колебаниях маятника. Общая характеристика понятия “измерение” В метрологии определение понятия “измерение” даёт ГОСТ 16.263-70. Измерение – научно обоснованный опыт для получения количественной информации с требуемой или возможной точностью о параметрах объекта измерения. Измерение включает в себя следующие понятия: - объект измерения; - цель измерения; - условия измерения (совокупность влияющих величин, описывающих состояние окружающей среды и объектов); - метод измерения, т.е. совокупность приёмов использования принципов и средств измерений (принцип измерения – совокупность физических явлений, положенных в основу измерения); - методика измерения, т.е. установленная совокупность операций и правил, выполнение которых обеспечивает получение необходимых результатов в соответствии с данным методом. - средства измерения: ▪ измерительные преобразователи, ▪ меры, ▪ измерительные приборы, ▪ измерительные установки, ▪ измерительные системы, ▪ измерительно-информационные системы; - результаты измерений; - погрешность измерений; - понятия, характеризующие качество измерений: ▪ достоверность (характеризуется доверительной вероятностью, т.е. вероятностью того, что истинное значение измеряемой величины находится в указанных пределах); ▪ правильность (характеризуется значением систематической погрешности); ▪ сходимость (близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами и средствами и в одних и тех же условиях; отражает влияние случайных погрешностей на результат); ▪ воспроизводимость (близость друг к другу результатов измерений одной и той же величины, выполняемых в разных местах, разными методами и средствами, но приведенных к одним и тем же условиям). Классификация измерений Целесообразность классификации измерений обусловлена удобством разработки методов измерений и обработки результатов измерений. Измерения различаются: По способу нахождения числовых значений физических величин: - прямые; - косвенные; - совместные – косвенные измерения, при которых значение физической величины находят путем измерения физических величин различной физической природы. Пример: при измерении силы используют формулу и измеряют массу тела m и его ускорение a. - совокупные – косвенные измерения, при которых значение физической величины находят путём нескольких измерений других однородных физических величин. Пример: для измерения объема параллелепипеда используют формулу V = abc и проводят измерения его сторон. По характеру точности результатов единичных измерений при проведении многократных измерений: - равноточные – измерения физических величин, выполненные одинаковыми по точности средствами измерений в одинаковых условиях; - неравноточные. По виду физических величин, измеряемых при прямых измерениях для получения результата косвенных измерений: - абсолютные – измерения, основанные на прямых измерениях основных (в системе СИ) величин и на использовании значений физических констант; - относительные – измерение отношения физической величины к одноименной. При относительных измерениях широко используется внесистемная безразмерная единица измерения – децибел. Пример. При сравнении амплитуд U 1 и U 2 напряжений их отношение будет выражено в децибеллах, если его записать в виде . Если отношение амплитуд равно 1дБ, то это означает, что отношение амплитуд . Отношение мощностей W 1 и W 2 выражается в децибеллах, если его записать в виде . Если отношение мощностей (квадратов амплитуд) равно 1дБ, то . В акустике децибелл – это одна из основных единиц, выражающих уровень звукового давления Р: 1дБ – уровень звукового давления, для которого , где Р 0 – пороговое значение (слышимости), принимаемое равным 2×10-5 Па (Паскаль). По характеру зависимости измеряемой физической величины от времени: - статические – измерения физических величин постоянных во времени; - динамические – измерения физических величин изменяющихся со временем; - квазистатические – измерения физических величин изменяющихся со временем, но которые можно считать постоянными за время измерения. Отметим, что существуют более точные критерии квазистатических измерений, которые связаны с реакцией СИ на изменение измеряемой физической величины. Они будут рассмотрены ниже. По условиям определения точности результатов: - метрологические – измерения, проводимые с помощью эталонов, образцовых средств, с целью воспроизведения единиц физических величин для передачи их размеров рабочим средствам измерения; - технические – измерения, проводимые с помощью рабочих средств.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 317; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.243.29 (0.012 с.) |