![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Размер физических величин. “Истинное значение” физических величинСодержание книги
Поиск на нашем сайте
В настоящее время в метрологии используются следующие понятия для характеристики размера (количественной характеристики) физической величины: - истинное значение; - действительное значение; - измеренное значение. Существует проблема выбора понятия, характеризующего значение физической величины. Рассмотрим, например, измерение с максимально возможной точностью объема цилиндра из измерений его диаметра и высоты. Сначала, по мере увеличения точности измерения, мы столкнемся с проблемой истинной формы цилиндра, поскольку идеально круглых тел не существует, и возникнет вопрос, по какой формуле вести расчет. Затем мы столкнемся с факторами, когда погрешность измерения станет меньше шероховатости поверхности. Тогда встанет проблема влияния качества обработки поверхности на диаметр. Далее, увеличивая точность, мы, в принципе, можем дойти до погрешности порядка размера атома или ядра (такие методы существуют), и тогда встанет вопрос о самом объекте измерения. Отсюда следует, что еще до измерения нужно определить объект измерения – его теоретическую модель. Основной постулат и аксиома теории измерений Как и любая другая наука, теория измерений должна строиться на основе постулатов или аксиом. Основным постулатом в теории измерений будем считать следующий постулат: измеряемая физическая величина и её “истинное” значение существуют только в рамках принятой теоретической модели объекта измерения Измеряемая физическая величина определяется как один из параметров этой модели. Аксиома: модель объекта (в том числе, и условий измерений) можно построить только при наличии априорной информации (предварительного исследования объекта или знаний об объекте). Теоретические модели материальных объектов, Реальные объекты и явления материального мира чрезвычайно сложны. Человеческое сознание не в состоянии охватить все свойства этих объектов и связи между ними, поэтому в процессе описания и изучения реальных объектов человек вынужден упрощать их свойства, т.е. заменять реальные объекты их моделями. В широком смысле любой образ какого-либо объекта, в том числе и мысленный, называют моделью. Моделированием называется целенаправленное исследование явлений, процессов или объектов путём построения и изучения их моделей.
Любой метод научного исследования базируется, по существу, на идее моделирования. При этом различают: - теоретические методы, для которых используются теоретические модели; - экспериментальные методы, для которых используются предметные (натурные) модели. Предметное моделирование предполагает построение макета и проведение реального физического эксперимента с этим макетом. В ряде случаев предметное моделирование требует создания сложных и дорогостоящих установок, что не всегда возможно и не всегда оправданно. Более того, предметное моделирование не всегда позволяет изучить внутренние, скрытые от глаз наблюдателя, свойства реальных систем. Теоретическое моделирование, начиная от выбора модели и до интерпретации результатов, предполагает прохождение следующих этапов: - создание физической модели путём идеализации содержания реальной задачи; - создание математической модели, описывающей физическую модель с помощью математических знаков и символов; - исследование математической модели; - получение, интерпретация и проверка результатов. Физические модели Физика как наука о природе, изучающая простейшие, и вместе с тем, наиболее общие свойства материального мира, также базируется на теоретических моделях. Эти модели характеризуются определёнными понятиями и параметрами, которые называют физическими величинами. Примеры физических понятий и величин: пространство, система отсчета, скорость, электрическое поле, влажность, время, импульс, температура. При построении физической модели необходимо в системе материальных объектов выделить и описать физические тела, поля, условия движений, взаимодействий, ввести понятия характеризующие свойства объектов, и указать или сформулировать физические законы, описывающие связь между этими понятиями и взаимодействия между этими объектами. В соответствии с этим при построении физической модели можно выделить 3 этапа: Этап 1. Моделирование поля и вещества. Примеры: - тело – материальная точка; - тело - абсолютно твёрдое; - тело - идеально упругое. - магнитное поле – однородное; - электрическое поле – центрально симметричное;
- жидкость, текущая в трубе, – не сжимаемая и не имеет вязкости; - газ в цилиндре – идеальный. Этап 2. Моделирование условий движения и взаимодействий в рамках моделей поля и вещества. Примеры: - движение происходит в инерционной системе отсчета; - трение отсутствует; - тело движется прямолинейно и равноускоренно; - деформации тела – линейно упругие. Этап 3. Формулировка физических законов, описывающих состояние, движение и взаимодействие объектов, входящих в рассматриваемую физическую систему. Примеры: - движение тел подчиняется второму закону Ньютона; - взаимодействие материальных точек подчиняется закону Всемирного тяготения; - деформация тела подчиняется закону Гука; - сила, действующая на движущиеся заряды, описывается законом Лоренца. Таким образом, физическими моделями объекта или процесса будем называть теоретические модели, включающие в себя модели вещества и поля, а также закономерности условий движения и взаимодействий. Математические модели Построенные выше физические модели необходимо описать с помощью символов в виде математических формул и уравнений. Эти символы – параметры объектов (они же обозначают физические величины) – связаны между собой в виде выше сформулированных физических законов. Совокупность формул и уравнений, устанавливающих связь между этими параметрами (физическими величинами) на основе законов физики и полученных в рамках выбранных физических моделей, будем называть математической моделью объекта или процесса. Следовательно, о физических величинах можно говорить как о параметрах, характеризующих и качественно, и количественно построенные физические модели. Процесс создания математической модели можно также разделить на 3 этапа: Этап 1. Составление формул и уравнений, описывающих состояние, движение и взаимодействия объектов в рамках выбранных физических моделей. Этап 2. Решение и исследование сугубо математических задач сформулированных на первом этапе. Основным вопросом здесь является решение так называемой прямой задачи, т.е. получение теоретических следствий и численных данных. На этом этапе важную роль играет математический аппарат и вычислительная техника (компьютер). Этап 3. Выяснение того, согласуются ли результаты анализа и вычислений с результатами измерений в пределах точности последних. Отклонение результатов расчётов от результатов измерений свидетельствует: - либо о неправильности применённых математических методов; - либо о неверности принятой физической модели; - либо о неверности процедуры измерений. Выяснение источников ошибок требует большого искусства и высокой квалификации исследователя. Бывает, что при построении математической модели некоторые её характеристики или связи между параметрами остаются неопределёнными вследствие ограниченности наших знаний о физических свойствах объекта. Например: иногда оказывается, что число уравнений, описывающих свойства объекта и связи между объектами, меньше числа параметров (физических величин), характеризующих объект. В этих случаях приходится вводить дополнительные уравнения, характеризующие объект и его свойства, иногда даже пытаются угадать эти свойства, для того, чтобы задача была решена, а результаты соответствовали результатам опытов в пределах заданной погрешности. Подобного образа задачи называются обратными.
|
|||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 401; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.97.14.85 (0.009 с.) |