Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Представление рациональной функции в виде суммы простейших дробей.Содержание книги
Поиск на нашем сайте
Теорема Правильную рациональную функцию одной переменной x можно единственным образом представить в виде суммы элементарных дробей
где A, M, N, a, p, q — действительные числа и k — натуральные числа. В этой сумме каждому действительному нулю a кратности k знаменателя Qn (x) соответствуют k слагаемых
Каждой паре комплексно сопряженных нулей кратности k знаменателя Qn (x) (являющихся нулями квадратного трехчлена x 2 + 2 px + q) соответствуют k слагаемых
Представление правильной рациональной функции в виде суммы элементарных дробей называется разложением на элементарные дроби. Коэффициенты элементарных дробей, фигурирующих в разложении, однозначно определяются условием тождественности правильной рациональной функции и ее разложения. 11. Матрицы. Операции над матрицами. Свойства сложения и умножения матриц, умножения на действительное число, транспонирования. Матрица Матрицей размера m на n (записывается так )называется совокупность mn вещественных (комплексных) чисел или элементов другой структуры (многочлены, функции и т.д.), записанных в виде прямоугольной таблицы, которая состоит из m строк и n столбцов и взятая в круглые или прямоугольные или в двойные прямые скобки. При этом сами числа называются элементами матрицы и каждому элементу ставится в соответствие два числа - номер строки и номер столбца. Для обозначения матрицы используются прописные латинские буквы, при этом саму матрицу заключают в круглые или прямоугольные или в двойные прямые скобки. Элементы матрицы обозначают строчными латинскими буквами, снабженными двумя индексами: - элемент матрицы, расположенный в i-й строке и j-м столбце или коротко элемент в позиции (i,j). В общем виде матрица размера m на n может быть записана следующим образом
Операции над матрицами 1. Сложение матриц - поэлементная операция 2. Вычитание матриц - поэлементная операция 3. Произведение матрицы на число - поэлементная операция 4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B) Amk*Bkn=Cmn причем каждый элемент сij матрицы Cmn равен сумме произведений элементов i-ой строки матрицы А на соответствующие элемеенты j-го столбца матрицы B, т.е. Покажем операцию умножения матриц на примере 5. Возведение в степень m>1 целое положительное число. А - квадратная матрица (m=n) т.е. актуально только для квадратных матриц 6. Транспонирование матрицы А. Транспонированную матрицу обозначают AT или A' Строки и столбцы поменялись местами Свойства сложения матриц
A + (– A) = A – A = 0, где 0 – матрица, составленная из нулевых элементов.
Свойства, связанные с умножением матриц.
12. Обратная матрица. Алгоритм нахождения обратной матрицы. Свойства обратных матриц.
Обратная Матрица Рассмотрим квадратную матрицу . Обозначим Δ =det A. Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0. Квадратная матрица В есть обратная матрица для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В. Теорема. Для того, чтобы матрица А имела обратную матрицу, необходимо и достаточно, чтобы ее определитель был отличен от нуля. Обратная матрица матрице А, обозначается через А-1, так что В = А-1 и вычисляется по формуле , (1) где А i j - алгебраические дополнения элементов a i j матрицы A.. Вычисление A-1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A-1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ранга матрицы можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.
|
|||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 460; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.208.127 (0.005 с.) |