Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Средства хранения данных в иао по (БД их классификация и описание)↑ ⇐ ПредыдущаяСтр 15 из 15 Содержание книги
Поиск на нашем сайте
На самом деле, рассматривая Интернет, мы уже затронули вопрос, связанный со средствами хранения данных... В противном случае, что же такое Интернет, если не система распределенного хранения данных? Средства хранения данных представляют собой обязательный компонент любой технологии, связанной с анализом информации. В природе очень мало (если не отсутствуют вообще) систем, для которых несущественна предыстория их существования — можно говорить о физических аналогах памяти, например, любая запасенная (потенциальная) энергия — это тоже своеобразная память. В этом смысле, камень, лежащий на вершине горы, и тот обладает памятью о той силе, которой он некогда был вознесен на нее. Поэтому, любая система, предназначенная для анализа информации, должна располагать подсистемой хранения данных. И, если даже нам неизвестно, сколько тысячелетий камень лежит на вершине горы, мы, все равно, располагаем памятью в виде физической модели поведения подобных объектов и можем вычислить ту потенциальную энергию, которая запасена в нем. Безусловно, многое определяется выбором технологической базы для реализации подсистемы хранения. Здесь следует выделять следующие классы подсистем хранения данных: · подсистемы хранения данных на носителях с последовательным доступом к данным; · подсистемы хранения данных на базе технологий, обеспечивающих параллельный доступ к данным. многоканальные устройства регистрации с произвольным доступом, распределенные системы хранения данных на базе сетей компьютеров, вводится иерархическая организация данных, системы параллельных вычислений, нейросетевые компьютеры и так далее. Постепенно совершенствуя технологии, человечество приближается к моменту, когда можно будет говорить о создании эффективных самоорганизующихся структур хранения данных, на базе которых могут быть созданы действительно интеллектуальные системы анализа данных. Многое также зависит и от того, что, собственно, подлежит хранению в подсистеме хранения данных. Здесь следует рассматривать два аспекта: аспект, связанный с уровнем детализации и завершенностью этапа их анализа (фактографические данные или модели), и аспект, связанный со способом представления (неформализованные или формализованные данные). Современные подсистемы хранения данных чаще всего строятся по принципу, либо исключающему возможность их анализа без привлечения информации, внешней по отношению к данным, либо препятствующему их параллельному считыванию и обработке. В одном случае данные организуются в структуры, конфигурация и семантика связей которых находится вне подсистемы хранения (в подсистеме интерпретации), а в другом случае данные организуются таким образом, чтобы по мере поэтапного вхождения в контекст хранения система считывания накапливала знания, необходимые для интерпретации данных. В одном случае система считывания заранее должна располагать моделью интерпретации, а в другом — формулирует модель в ходе обработки. РЕЛЯЦИОННЫЕ БАЗЫ ДАННЫХ Наиболее широкое распространение на сегодня (если не считать архивы на традиционных носителях) получили подсистемы хранения данных, использующие реляционную технологию. Идеология и логические основания теории реляционных баз данных разработаны американским ученым Е.Ф. Коддом (Codd E.F.) Подобные системы хранения относятся к классу систем, которым для работы с данными требуются внешние модели интерпретации — даже при наличии непосредственного доступа к носителю данных семантика связей может быть восстановлена лишь в редких случаях. Любое изменение структур таблиц, используемых для хранения экземпляров данных, должно сопровождаться внесением изменений в модель интерпретации, зафиксированную в приложении, обеспечивающем считывание и связывание данных. При изменении структуры объектов учета и атрибутов, используемых для их описания, организация сталкивается с необходимостью доработки программного обеспечения, используемого пользователями, что не всегда возможно (меняются языки программирования, высока кадровая динамика и т. д.). НАВИГАЦИОННЫЕ БАЗЫ ДАННЫХ Навигационная парадигма опирается все на тот же аппарат табличного представления данных, где имя колонки соответствует имени атрибута, строка — совокупности свойств некоторой сущности, выступающей в качестве атомарной на данном уровне описания. На следующем уровне описания этой же сущности атрибут может быть раскрыт с подобающей степенью детализации, но главное: описание будет вновь доведено до атомарного уровня — в противном случае все ухищрения лишены какого бы то ни было смысла. Процесс построения описательной структуры навигационной БД связан с процедурой поэтапной декомпозиции свойств сложного объекта в некоторой плоскости отношений (отношения включения, подчинения и т. д.). ОБЪЕКТНЫЕ БАЗЫ ДАННЫХ Мы уже рассмотрели реляционные и навигационные БД, но ни те, ни другие не были признаны нами в качестве средства хранения данных, отвечающего потребностям ИАР и сущности системного подхода (это не значит, что они вообще не могут быть эффективно использованы при ведении ИАР). Еще одной парадигмой построения баз данных, наследующей свойства навигационных баз данных, является парадигма объектных баз данных. Парадигма объектных баз данных по своей сути близка идеологии имитационного моделирования: для описания объектов учета такие БД используют комплекс компонент описания, обеспечивающий учет не только атрибутов объекта, но и системных связей, их параметров, правил комбинирования, проверки допустимости значений и так далее. В классическом варианте объектных БД объекты идентифицируются по именному принципу, их свойства определяются набором общих (свойственных родительскому классу) и частных (свойственных данному экземпляру объекта или производному классу) характеристик. ОБЪЕКТНО-РЕЛЯЦИОННЫЕ БАЗЫ ДАННЫХ Парадигма объектно-реляционных БД объединяет основные преимущества реляционных СУБД и некоторые, унаследованные от объектных СУБД. Заметим, что «объектность» в объектно-реляционных СУБД иная, нежели в объектных СУБД — объектом в них являются данные (именно для манипуляций над ними разрабатываются методы), а не семантика связей реального мира. Это позволяет, с одной стороны, использовать механизмы наследования и переопределения, обращения к объектам с применением специализированных методов, а с другой — решать сложные аналитические задачи, связанные с логическим анализом значений атрибутов. ХРАНИЛИЩА ДАННЫХ Идея хранилищ данных (Data Warehouse) впервые была предложена Б. Инмоном. Сейчас аналитикам многих западных компаний уже трудно представить, как они обходились с дезинтегрированными ресурсами различных баз данных, созданных в различные периоды времени в разных организациях с применением различных технологических платформ... Однако теперь, после внедрения технологии хранилищ данных, столь удачно сочетающейся с концепцией оперативной аналитической обработки данных (OLAP), эти различия перестали быть ощутимыми для потребителей. Хранилища данных прочно заняли одно из почетных мест в инструментарии аналитика. Практика построения хранилищ данных доказала необходимость переноса идеологии виртуальных таблиц, реализованной в реляционных базах данных, на крупномасштабные приложения и развития ее до технологии витрин данных (Data Mart), позволяющих сделать прозрачным доступ к данным, хранимым в технологически неоднородных средах. БАЗЫ ЗНАНИЙ И МОДЕЛЕЙ Особый класс систем хранения данных представляют собой базы знаний и моделей. Если до обращения к тематике объектных и объектно-реляционных баз данных речь шла преимущественно о структурной декомпозиции объектов описания и выделении статических атрибутов, то базы знаний и моделей помимо этих аспектов выделяют и временной аспект функционирования систем и объектов учета. Этот класс систем хранения данных ориентирован на хранение данных о логике причинно-следственных отношений, функциональных зависимостях и иных параметров, в той или иной степени связанных с временем. Основная задача баз знаний и баз моделей — хранение логически организованной информации, обеспечивающей возможность с применением логического аппарата и системы аксиом различного рода сформулировать вывод о состоянии, тенденции или характеристиках процесса. При этом аксиомы, хранимые в базе знаний или базе моделей, могут носить как характер абсолютных утверждений, так и вероятностных суждений относительно некоторых сущностей и процессов, иметь общую значимость или быть истинными лишь для некоторого класса начальных условий. 149. Экспертные системы (структура и содержание) Эксперты высокого класса не всегда есть под рукой, их опыт всегда специфичен, да и ротацию кадров следует учитывать. Технология же экспертных систем позволяет улучшить (если не исправить) ситуацию в кадровой сфере, а также оптимизировать работу экспертов высокого класса, переложив решение рутинных проблем на «плечи» автоматизированных систем. Поэтому экспертные системы нашли широкое применение в современной аналитике. Заметим, что экспертные системы являются инструментом, способным оперировать, в том числе, и знаниями, еще не прошедшими процедуру научного обобщения и формализации — кроме экспертных систем это может делать только человек. К этому следует прибавить, еще и то, что способности человека по оперативному извлечению необходимых знаний и данных из памяти ограничены и подвержены влиянию целого ряда внешних условий (например, стрессовые ситуации, колебания физических параметров среды обитания и т. п.). В качестве иллюстрации к последнему утверждению приведем курьезный пример. В 1990-е годы в Италии провели интересный эксперимент: специально отобранной группе девушек были предложены для решения два идентичных задания, первое из которых они решали, будучи одеты в одежду делового стиля, а второе — в бикини. Второе задание было решено с чуть ли не в два раза худшими результатами, чем первое. А ведь это всего лишь изменение стиля одежды... Чего же ожидать от человека, если поместить его в действительно экстремальные условия? В последние десятилетия направление экспертных систем (ЭС) оформилось в самостоятельную (и весьма прибыльную) отрасль теоретических и прикладных исследований в рамках теории искусственного интеллекта. Правда, в силу действия модных течений название специалистов, работающих в этой области, несколько раз менялось: то их именовали специалистами по интеллектуальным технологиям, то инженерами знаний, то когнитологами. Сейчас на западе в ходу термин Knowledge Management (управление знаниями), соответственно, поменялось и название специальности. Целью деятельности этих специалистов является создание программ и устройств, использующих знания и процедуры вывода для решения задач в заданной предметной области. ЭС не только реализуют заранее разработанные алгоритмы решения задач, но способны самостоятельно вырабатывать «новые» алгоритмы решения возникающих задач.
Следует выделять два направления работ в этой отрасли: направление создания инструментальных средств для создания экспертных систем (программных оболочек экспертных систем) и направление собственно создания ЭС, наполненных конкретными знаниями в некоторой предметной области. В настоящее время ЭС применяются в различных областях человеческой деятельности. К числу уже устоявшихся, апробированных в научно-исследовательской и деловой практике, можно отнести экспертные системы медицинского, технологического, юридического назначения, экспертные системы, ориентированные на поддержку процессов проектирования в архитектуре, электронике и электротехнике, разработки программного обеспечения, а также в военных приложениях. Их характерной особенностью является то, что они разработаны для тех отраслей человеческой деятельности, в которых проявляются устойчивые закономерности, описания которых и подвергается формальному представлению в базе знаний. Перечислим ряд экспертных систем, принадлежащих к различным отраслям деятельности человека: MYCIN- в области медицины; Rational Rose — в области разработки программного обеспечения; ArchiCAD — в области архитектурного проектирования; P-CAD, Or-CAD — в электронике и электротехнике и многие другие.
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 227; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.28.200 (0.009 с.) |