![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дисперсия и поглощение света в веществе.Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
(Взаимодействие света с веществом. Классическая электронная теория дисперсии. Способы наблюдения дисперсии. Нормальная и аномальная дисперсии. Уравнение дисперсии. Поглощение света. Закон Бугера. Коэффициент поглощения. Оптическая плотность. Зависимость оптической плотности растворов от длины пути и концентрации. Рассеяние света. Коэффициент экстинкции. Закон Рэлея.) Опыт показывает, что скорость света Дисперсия света – это явление, обусловленное зависимостью показателя преломления n от частоты Абсолютным показателем преломления среды n называется физическая величина, определяемая отношением скорости света в вакууме с (с ≈ 3∙108 м/с) к фазовой скорости света Таким образом, скорость света в среде связана с показателем преломления вещества соотношением:
Согласно электромагнитной теории Максвелла абсолютный показатель преломления среды
где
Дисперсия света может быть охарактеризована функцией Дисперсией вещества называется величина
Рис. 5-1. Зависимость показателя преломления среды
Рис.5-2. Разложение белого света в спектр 3-хгранной призмой.
![]() Рис. 5-3. Зависимость показателя преломления среды Основы теории дисперсии света могут быть получены, если рассматривать взаимодействие световых волн с электронами атомов. Теоретическому рассмотрению проще всего поддается дисперсия в газах, т.к. в этом случае в первом приближении можно не учитывать сложное взаимодействие атомов и молекул среды. Согласно современным научным представлениям, движение электронов в атоме подчиняется законам квантовой механики, а не классической физики, тем не менее, как показал Лоренц, для качественного понимания многих оптических явлений достаточно ограничится гипотезой о существовании внутри атомов квазиупруго связанных электронов. Электроны, входящие в состав атомов, можно разделить на периферийные, так называемые, оптические, и электроны внутренних оболочек. На излучение ипоглощение света в оптическом диапазоне влияние оказывают лишь оптические электроны. Для простоты предположим сначала, что в атоме есть всего один оптический электрон. В классической теории оптический электрон можно рассматривать как затухающий гармонический осциллятор, вынужденные колебания которого происходят под действием переменного поля электромагнитной световой волны и описываются дифференциальным уравнением, представляющим собой уравнение движения электрона:
где m – масса электрона, e – его заряд, k – константа, аналогичная коэффициенту упругости, x – смещение электрона, kx - квазиупругая возвращающая сила, стремящаяся вернуть электрон в положение равновесия,
Уравнения движения электрона можно также переписать в виде: где введены следующие обозначения: В предположении, что сила сопротивления незначительна (коэффициент сопротивления Теория дифференциальных уравнений позволяет найти решение этого уравнения в виде:
Таким образом, амплитуда вынужденных колебаний оптического электрона зависит от соотношения частот Если рассматривать молекулы или атомы диэлектрика как системы, в состав которых входят электроны, находящиеся в молекулах в состоянии равновесия, то под влиянием электрического поля световой волны эти заряды смещаются из положения равновесия на расстояние x, превращая таким образом молекулу в электрическую систему с электрическим моментом Для изотропных диэлектриков (исключая сегнетоэлектрики) поляризованность Поскольку Теперь, чтобы получить выражение для определения показателя преломления, необходимо подставить вместо x его значение, ранее полученное из решения соответствующего дифференциального уравнения. Окончательно получим выражение для зависимости показателя преломления от частоты световой волны в виде
Рис.5-4 дает графическое представление этой зависимости. Рис. 5-4. Зависимость показателя преломления n от частоты Если в веществе имеются электроны, совершающие вынужденные колебания с различными собственными частотами ωоi, то
где no – концентрация атомов, ωоi – собственные частоты колебаний электронов, m – масса электрона, εо – электрическая постоянная. Рассмотрение всего ансамбля оптических электронов приводит к заключению, что электроны в атомах обладают определенным набором собственных частот колебаний ωоi. Графическая зависимость такого рассмотрения дана на рис. 5-5.
Рис.5-5. Зависимость показателя преломления от частоты
Все силы, действующие внутри атомов и молекул, имеют электрическую природу. Однако объяснить этими силами существование и структуру атомов и молекул классическая физика не в состоянии. Это было сделано в рамкахквантовой механики и привело к поразительному результату, что в отношении дисперсии и поглощения света атомы и молекулы ведут себя так, как если бы среда представляла собой набор осцилляторов с различными собственными частотами и коэффициентами затухания, подчиняющимися классическим уравнениям Ньютона, т.е., законам классической физики. Однако нужно не забывать, что собственные частоты и коэффициенты затухания не могут быть вычислены на основе классической модели. Их нужно рассматривать как формально введенные постоянные, а их истинный физический смысл может быть раскрыт только в рамках квантовой теории. Классическая теория представляет лишь модель, которая, тем не менее, приводит к правильным окончательным результатам.
Итак, теория предполагает, что электроны, обладающие в атомах и молекулах набором собственных частот колебаний ωоi, под действием падающей световой волны совершают вынужденные колебания с частотой ω, совпадающей с частотой падающей световой волны. Первичная электромагнитная волна, распространяясь в веществе, вызывает вынужденные колебания электронов, и они становятся источниками вторичных волн. Вторичные волны, складываясь с первичной, образуют результирующую волну с амплитудой и фазой, отличными от амплитуды и фазы первичных волн. В результате волна проходит через вещество с фазовой скоростью, отличной от скорости, с которой она распространялась бы в вакууме. Все изложенное относится к излучению изолированного атома. В случае среды, состоящей из близко расположенных атомов, надо принять во внимание, что атом не только теряет энергию на излучение, но и получает энергию, излучаемую другими атомами. Если среда оптически однородна, то оба эти процесса в точности компенсировали бы друг друга. В отсутствие других причин затухания колебания атома были бы незатухающими. Таким образом, плоская бегущая световая волна распространялась бы в идеализированной среде без ослабления.
Поглощение света
Поглощение света – это уменьшение интенсивности оптического излучения (света), проходящего через среду, заполненную веществом. Как уже было отмечено ранее, в идеализированной однородной среде колеблющиеся электроны возвращают всю падающую энергию в виде вторичных волн, и поглощения света не происходит. В реальном теле часть падающей световой энергии переходит в другие формы (главным образом, в тепловую) – наблюдается поглощение света. Особый интерес представляет случай, когда частота световой волны ω совпадает с частотой собственных колебаний электронов ωоi. При этих частотах энергия световой волны полностью поглощается веществом. Такое явление называется резонансным поглощением света, а соответствующая частота – резонансной. Именно в области резонансного поглощения наблюдается аномальное поведение дисперсии. Вещество, состоящее из атомов или молекул с определенным набором частот собственных колебаний электронов ωоi даст в спектре прошедшего через него света узкие линии поглощения. Коэффициент преломления окажется постоянным в областях, далеких от линий поглощения, и будет быстро меняться с частотой и сильно отличаться от единицы вблизи каждой линии поглощения, где взаимодействие света с веществом велико.
Экспериментальная зависимость показателя преломления n и коэффициента поглощения
Рис. 6-1. Зависимость показателя преломления n и коэффициента поглощения Из экспериментальной зависимости (рис.6-1) следует, что коэффициент преломления n принимает большие значения с длинноволновой стороны полосы поглощения и малые – с ее коротковолновой стороны. Внутри самой полосы поглощения коэффициент преломления убывает с уменьшением длины волны (аномальная дисперсия). Как видно, коэффициент преломления может быть меньше единицы, значит, фазовая скорость волны может превышать скорость света с. Это не противоречит теории относительности, так как скорость передачи энергии равна групповой скорости, которая не превышает значение с (смотри: 1- Приложение; 2- И.В.Савельев. Курс общей физики. Том 2. Электричество и магнетизм. Волны. Оптика. 2006 г., с. 461). Рассмотренные выше соображения справедливы не только для электронов, но и для ионов, причем, ввиду большей массы ионов, классические представления для ионов более обоснованы. В соответствии с теоретическими представлениями было найдено, что все осцилляторы отчетливо подразделяются на две группы: у одной удельные заряды по порядку величины близки к удельному заряду электрона, а у другой – к удельному заряду ионов. (Удельный заряд определяется отношением величины заряда к его массе, т.е. Опыт показывает, что интенсивность I плоской световой волны, прошедшей сквозь прозрачный диэлектрик, обнаруживает уменьшение своего значения согласно закону Бугера (установленного экспериментально Бугером и обоснованного теоретически И. Ламбертом):
Рис.6-2. Иллюстрация к закону поглощения Бугера. I0 – интенсивность световой волны, вступающей в вещество, d – толщина слоя вещества, пройденного светом,
Коэффициент поглощения
В тех случаях, когда поглощение осуществляется молекулами вещества, растворенного в практически не поглощающем растворителе, коэффициент поглощения
где, d – толщина слоя раствора, через который прошел свет. В таком виде закон поглощения принято называть законом Бугера – Ламберта – Бера.
Оптическая плотность (D) - мера непрозрачности слоя вещества толщиной d для световых лучей; характеризует ослабление оптического излучения в слоях различных веществ (красителях, светофильтрах, растворах, газах и т.п.). Для не отражающего слоя оптическая плотность равна: Коэффициент поглощения
Цветные прозрачные тела, красители, растворы обнаруживают селективность (избирательность) поглощения в области видимых лучей, то есть различно поглощают лучи различных длин волн. Например, красными является стекло или раствор, слабо поглощающие красные и оранжевые лучи и сильно поглощающие зеленые и фиолетовые. В общем случае коэффициент
Рис.6-3. Зависимость коэффициента поглощения вещества от частоты света для газов и паров металлов при невысоких давлениях.
![]() Рис.6-4. Зависимость коэффициента поглощения вещества от частоты света для жидкостей, твердых тел, а также для газов при высоком давлении. Можно утверждать, что расширение полос поглощения для жидкостей, твердых тел и газов при высоких давлениях – это результат взаимодействия атомов между собой. Металлы, как известно, практически непрозрачны для света. Это объясняется тем, что под действием электрического поля световой волны, свободные электроны приходят в движение. А движение электрических зарядов под действием электрического поля – это электрический ток (в рассматриваемом случае - быстропеременный), протекание же электрического тока должно непременно сопровождаться выделением джоулева тепла. Таким образом, при освещении светом металлы просто нагреваются, поскольку наблюдаться происходит превращение световой энергии в тепловую
Лекция 7 (2 часа)
|
|||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 935; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.12.145 (0.013 с.) |