Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дисперсия и поглощение света в веществе.

Поиск

(Взаимодействие света с веществом. Классическая электронная теория дисперсии. Способы наблюдения дисперсии. Нормальная и аномальная дисперсии. Уравнение дисперсии. Поглощение света. Закон Бугера. Коэффициент поглощения. Оптическая плотность. Зависимость оптической плотности растворов от длины пути и концентрации. Рассеяние света. Коэффициент экстинкции. Закон Рэлея.)

Опыт показывает, что скорость света в среде зависит от длины волны света ( - расстояние, которое световая волна проходит за один период. Период - время одного полного колебания). В видимом диапазоне длин волн, скорость минимальна для фиолетовых лучей ( ф ≈ 400 нм) и максимальна для красных лучей ( кр ≈ 760 нм).

Дисперсия света – это явление, обусловленное зависимостью показателя преломления n от частоты (длины волны ) света или зависимостью фазовой скорости световых волн от их частоты (смотри приложение). Все среды, за исключением абсолютного вакуума, обладают дисперсией.

Абсолютным показателем преломления среды n называется физическая величина, определяемая отношением скорости света в вакууме с (с ≈ 3∙108 м/с) к фазовой скорости света в среде

Таким образом, скорость света в среде связана с показателем преломления вещества соотношением:

=c/n.

Согласно электромагнитной теории Максвелла абсолютный показатель преломления среды

,

где -диэлектрическая проницаемость среды, -магнитная проницаемость. В оптической области спектра для всех прозрачных диэлектриков , поэтому имеем

или

Дисперсия света может быть охарактеризована функцией = () или = ( ), поскольку длина волны и частота связаны соотношением .

Дисперсией вещества называется величина , определяющая степень растянутости спектра вблизи данной длины волны . Дисперсия называется нормальной, если с ростом длины волны показатель преломления уменьшается, т.е. и аномальной, если (рис.5-1 и рис.5-3). Для прозрачных веществ характерно монотонное возрастание показателя преломления с уменьшением длины волны (рис. 5-1).

 

 

       
   

 

 


 

 

Рис. 5-1. Зависимость показателя преломления среды от длины световой волны и ее частоты в случае нормальной дисперсии.

 

В своем, ставшим классическим, опыте по разложению белого света Ньютон столкнулся с дисперсией света, еще не подозревая об электромагнитной природе световых волн. Опыт Ньютона состоял в том, что узкий пучок солнечного света он направил на боковую грань трехгранной призмы, а при выходе пучка из противоположной боковой грани наблюдались разноцветные лучи в следующей последовательности – красный(К), оранжевый(О), желтый(Ж), зеленый(З), голубой(Г), синий(С), фиолетовый (Ф) (рис.5-2). Полученную им цветную полоску Ньютон назвал спектром.

 

 

Рис.5-2. Разложение белого света в спектр 3-хгранной призмой.

 

 

а
а
(участки " а ")

Рис. 5-3. Зависимость показателя преломления среды от длины световой волны в случае нормальной и аномальной дисперсии.

Основы теории дисперсии света могут быть получены, если рассматривать взаимодействие световых волн с электронами атомов. Теоретическому рассмотрению проще всего поддается дисперсия в газах, т.к. в этом случае в первом приближении можно не учитывать сложное взаимодействие атомов и молекул среды. Согласно современным научным представлениям, движение электронов в атоме подчиняется законам квантовой механики, а не классической физики, тем не менее, как показал Лоренц, для качественного понимания многих оптических явлений достаточно ограничится гипотезой о существовании внутри атомов квазиупруго связанных электронов. Электроны, входящие в состав атомов, можно разделить на периферийные, так называемые, оптические, и электроны внутренних оболочек. На излучение ипоглощение света в оптическом диапазоне влияние оказывают лишь оптические электроны. Для простоты предположим сначала, что в атоме есть всего один оптический электрон. В классической теории оптический электрон можно рассматривать как затухающий гармонический осциллятор, вынужденные колебания которого происходят под действием переменного поля электромагнитной световой волны и описываются дифференциальным уравнением, представляющим собой уравнение движения электрона:

 

где m – масса электрона, e – его заряд, k – константа, аналогичная коэффициенту упругости, x – смещение электрона, kx - квазиупругая возвращающая сила, стремящаяся вернуть электрон в положение равновесия, - константа, аналогичная коэффициенту сопротивления при рассмотрении затухающих колебаний, - сила, аналогичная силе трения и формально введенная для учета поглощения света, – напряженность действующего на электрон электрического поля световой волны, имеющей циклическую частоту и амплитуду E0

Уравнения движения электрона можно также переписать в виде:

где введены следующие обозначения: и - собственная частота осциллятора, - коэффициент затухания.

В предположении, что сила сопротивления незначительна (коэффициент сопротивления = 0, что приводит и к = 0), уравнение движения электрона можно упростить и записать его в виде:

Теория дифференциальных уравнений позволяет найти решение этого уравнения в виде: , где амплитуда вынужденных колебаний электрона:

 

Таким образом, амплитуда вынужденных колебаний оптического электрона зависит от соотношения частот и .

Если рассматривать молекулы или атомы диэлектрика как системы, в состав которых входят электроны, находящиеся в молекулах в состоянии равновесия, то под влиянием электрического поля световой волны эти заряды смещаются из положения равновесия на расстояние x, превращая таким образом молекулу в электрическую систему с электрическим моментом (дипольный момент). Поляризованность, определяется как дипольный момент единицы объема диэлектрика . При концентрации атомов в диэлектрике равной численное значение поляризованности единицы объема можно рассчитать по формуле: .

Для изотропных диэлектриков (исключая сегнетоэлектрики) поляризованность линейно зависит от напряженности электрического поля : . По определению, диэлектрическая восприимчивость среды и диэлектрическая проницаемость связаны соотношением: и тогда можно записать, что

Поскольку , то

Теперь, чтобы получить выражение для определения показателя преломления, необходимо подставить вместо x его значение, ранее полученное из решения соответствующего дифференциального уравнения. Окончательно получим выражение для зависимости показателя преломления от частоты световой волны в виде

 

или

Рис.5-4 дает графическое представление этой зависимости.

Рис. 5-4. Зависимость показателя преломления n от частоты вблизи одной из резонансных частот .

Если в веществе имеются электроны, совершающие вынужденные колебания с различными собственными частотами ωоi, то

 

где no концентрация атомов, ωоi – собственные частоты колебаний электронов, m – масса электрона, εо – электрическая постоянная.

Рассмотрение всего ансамбля оптических электронов приводит к заключению, что электроны в атомах обладают определенным набором собственных частот колебаний ωоi. Графическая зависимость такого рассмотрения дана на рис. 5-5.

 

Рис.5-5. Зависимость показателя преломления от частоты при наличии нескольких резонансных частот .

 

Все силы, действующие внутри атомов и молекул, имеют электрическую природу. Однако объяснить этими силами существование и структуру атомов и молекул классическая физика не в состоянии. Это было сделано в рамкахквантовой механики и привело к поразительному результату, что в отношении дисперсии и поглощения света атомы и молекулы ведут себя так, как если бы среда представляла собой набор осцилляторов с различными собственными частотами и коэффициентами затухания, подчиняющимися классическим уравнениям Ньютона, т.е., законам классической физики. Однако нужно не забывать, что собственные частоты и коэффициенты затухания не могут быть вычислены на основе классической модели. Их нужно рассматривать как формально введенные постоянные, а их истинный физический смысл может быть раскрыт только в рамках квантовой теории. Классическая теория представляет лишь модель, которая, тем не менее, приводит к правильным окончательным результатам.

 

Итак, теория предполагает, что электроны, обладающие в атомах и молекулах набором собственных частот колебаний ωоi, под действием падающей световой волны совершают вынужденные колебания с частотой ω, совпадающей с частотой падающей световой волны.

Первичная электромагнитная волна, распространяясь в веществе, вызывает вынужденные колебания электронов, и они становятся источниками вторичных волн. Вторичные волны, складываясь с первичной, образуют результирующую волну с амплитудой и фазой, отличными от амплитуды и фазы первичных волн. В результате волна проходит через вещество с фазовой скоростью, отличной от скорости, с которой она распространялась бы в вакууме.

Все изложенное относится к излучению изолированного атома. В случае среды, состоящей из близко расположенных атомов, надо принять во внимание, что атом не только теряет энергию на излучение, но и получает энергию, излучаемую другими атомами. Если среда оптически однородна, то оба эти процесса в точности компенсировали бы друг друга. В отсутствие других причин затухания колебания атома были бы незатухающими. Таким образом, плоская бегущая световая волна распространялась бы в идеализированной среде без ослабления.

 

Поглощение света

 

Поглощение света – это уменьшение интенсивности оптического излучения (света), проходящего через среду, заполненную веществом.

Как уже было отмечено ранее, в идеализированной однородной среде колеблющиеся электроны возвращают всю падающую энергию в виде вторичных волн, и поглощения света не происходит. В реальном теле часть падающей световой энергии переходит в другие формы (главным образом, в тепловую) – наблюдается поглощение света.

Особый интерес представляет случай, когда частота световой волны ω совпадает с частотой собственных колебаний электронов ωоi. При этих частотах энергия световой волны полностью поглощается веществом. Такое явление называется резонансным поглощением света, а соответствующая частота – резонансной. Именно в области резонансного поглощения наблюдается аномальное поведение дисперсии. Вещество, состоящее из атомов или молекул с определенным набором частот собственных колебаний электронов ωоi даст в спектре прошедшего через него света узкие линии поглощения. Коэффициент преломления окажется постоянным в областях, далеких от линий поглощения, и будет быстро меняться с частотой и сильно отличаться от единицы вблизи каждой линии поглощения, где взаимодействие света с веществом велико.

Экспериментальная зависимость показателя преломления n и коэффициента поглощения от длины волны вблизи одной из резонансных частот ( – длина волны, соответствующая резонансной частоте ωо) представлена на рис. 6-1.

 
 

 

 


 

1

 

 

 
 


Рис. 6-1. Зависимость показателя преломления n и коэффициента поглощения от длины волны вблизи одной из резонансных частот (λо – длина волны, соответствующая резонансной частоте ωо).

Из экспериментальной зависимости (рис.6-1) следует, что коэффициент преломления n принимает большие значения с длинноволновой стороны полосы поглощения и малые с ее коротковолновой стороны. Внутри самой полосы поглощения коэффициент преломления убывает с уменьшением длины волны (аномальная дисперсия). Как видно, коэффициент преломления может быть меньше единицы, значит, фазовая скорость волны может превышать скорость света с. Это не противоречит теории относительности, так как скорость передачи энергии равна групповой скорости, которая не превышает значение с (смотри: 1- Приложение; 2- И.В.Савельев. Курс общей физики. Том 2. Электричество и магнетизм. Волны. Оптика. 2006 г., с. 461).

Рассмотренные выше соображения справедливы не только для электронов, но и для ионов, причем, ввиду большей массы ионов, классические представления для ионов более обоснованы. В соответствии с теоретическими представлениями было найдено, что все осцилляторы отчетливо подразделяются на две группы: у одной удельные заряды по порядку величины близки к удельному заряду электрона, а у другой – к удельному заряду ионов. (Удельный заряд определяется отношением величины заряда к его массе, т.е. ). Первым соответствуют полосы поглощения, лежащие в ультрафиолетовой (реже в видимой), а вторым – в инфракрасной области спектра. Это связано с тем, что массы атомов в десятки тысяч раз больше массы электрона.

Опыт показывает, что интенсивность I плоской световой волны, прошедшей сквозь прозрачный диэлектрик, обнаруживает уменьшение своего значения согласно закону Бугера (установленного экспериментально Бугером и обоснованного теоретически И. Ламбертом):

 

 

 

Рис.6-2. Иллюстрация к закону поглощения Бугера.

I0 – интенсивность световой волны, вступающей в вещество, d – толщина слоя вещества, пройденного светом, - коэффициент поглощения, зависящий от длины световой волны, химической природы и состояния вещества.

 

Коэффициент поглощения физическая величина, обратно пропорциональная слою вещества, при прохождении которого интенсивность падающего света убывает в е (е = 2,72) раз. При измерении коэффициента поглощения необходимо учитывать, что часть света отражается от границы исследуемого вещества. Закон справедлив при не слишком больших интенсивностях света и только для монохроматического излучения, так как для каждого вещества зависит от длины волны .

В тех случаях, когда поглощение осуществляется молекулами вещества, растворенного в практически не поглощающем растворителе, коэффициент поглощения оказывается пропорциональным числу поглощающих молекул в единице объема, т.е. пропорционален концентрации растворенного вещества С и выражается соотношением: , где – новый коэффициент поглощения, не зависящий от концентрации С и характерный только для молекулы поглощающего вещества. Для растворов закон Бугера принимает вид:

 

где, d – толщина слоя раствора, через который прошел свет. В таком виде закон поглощения принято называть законом Бугера – Ламберта – Бера.

 

Оптическая плотность (D) - мера непрозрачности слоя вещества толщиной d для световых лучей; характеризует ослабление оптического излучения в слоях различных веществ (красителях, светофильтрах, растворах, газах и т.п.).

Для не отражающего слоя оптическая плотность равна:
D = lg I0/I = , где I – интенсивность излучения,прошедшего поглощающую среду; I 0 – интенсивность падающего излучения. Оптическая плотность может быть определена и как логарифм величины, обратной коэффициенту пропускания , т.е., D = lg ( 1/ ).

Коэффициент поглощения и оптическая плотность D связаны соотношением:

 

Цветные прозрачные тела, красители, растворы обнаруживают селективность (избирательность) поглощения в области видимых лучей, то есть различно поглощают лучи различных длин волн. Например, красными является стекло или раствор, слабо поглощающие красные и оранжевые лучи и сильно поглощающие зеленые и фиолетовые. В общем случае коэффициент зависит от длины волны (или частоты) света. Поглощение велико лишь в области частот, близких к частотам собственных колебаний электронов в атомах. У веществ, атомы (молекулы) которых практически не взаимодействуют (газы и пары металлов при невысоком давлении), коэффициент поглощения для большинства длин волн близок к нулю, и лишь для очень узких областей спектра имеет резкие максимумы (рис.6-3). Эти максимумы соответствуют резонансным частотам колебаний электронов. Газы при высоких давлениях, жидкости и твердые тела дают широкие полосы поглощения (рис.6-4).

χ

 

Рис.6-3. Зависимость коэффициента поглощения вещества от частоты света для газов и паров металлов при невысоких давлениях.

Рис.6-4. Зависимость коэффициента поглощения вещества от частоты света для жидкостей, твердых тел, а также для газов при высоком давлении.

Можно утверждать, что расширение полос поглощения для жидкостей, твердых тел и газов при высоких давлениях – это результат взаимодействия атомов между собой.

Металлы, как известно, практически непрозрачны для света. Это объясняется тем, что под действием электрического поля световой волны, свободные электроны приходят в движение. А движение электрических зарядов под действием электрического поля – это электрический ток (в рассматриваемом случае - быстропеременный), протекание же электрического тока должно непременно сопровождаться выделением джоулева тепла. Таким образом, при освещении светом металлы просто нагреваются, поскольку наблюдаться происходит превращение световой энергии в тепловую

 

Лекция 7 (2 часа)

 



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 924; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.255.247 (0.009 с.)