В процессах сильного и электромагнитного взаимодействий четность сохраняется: в этом заключается закон сохранения четности. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

В процессах сильного и электромагнитного взаимодействий четность сохраняется: в этом заключается закон сохранения четности.



Однако Ц. Ли и Ч. Янг (1956 г.) показали, что при слабых взаимодействиях этот закон не выполняется.

Изотопический спин. Все адроны распределяются по небольшим группам, называемым изотопическими мультиплетами (изомультиплетами). Это — группы элементарных частиц, одинаковым образом участвующие в сильном взаимодействии, имеющие близкие массы, одинаковые барионные заряды, одинаковые спины и различающиеся электрическими зарядами [например, протон и нейтрон; π+, π - и π0 (см. Приложение 1). Адронам присуща изотопическаяинвариантность, заключающаяся в том, что сильное взаимодействие для всех адронов, входящих в один и тот же изомультиплет, одинаково, т. е. не зависит от электрического заряда.

Эту по существу независимость от электрических зарядов называют изотопическо й (или зарядовой) независимостью сильных взаимодействий. Так, протон и нейтрон объединяют в изотопический дублет. Эти две частицы рассматриваются как различные квантовые состояния одной и той же частицы — нуклона. Изотопические триплеты — это, например, (π-, π0, π +) и (Σ-, Σ0, Σ+). Существуют и одиночные частицы, не входящие в мультиплеты, их называют синглетами ( η-мезон, Λ- и Ω-гипероны).

По аналогии с обычным спином каждому зарядовому мультиплету приписывают определенное значение изотопического спина (короче изоспина ) I. Значение I выбирают так, чтобы 2 I + 1 было равно числу частиц в мультиплете n.

n = 2 I + 1 (17.9)

Отдельным частицам мультиплета приписывают различные значения I zпроекции изоспина на ось Z в воображаемом изотопическом пространстве. Причем частице с большим электрическим зарядом — большее значение I z. Например, для нуклонов I = 1/2, у протона I z = +1/2, у нейтрона I z = -1/2; для π-мезонов I = 1, тогда для π +, π0, π-соответственно Iz равно +1, 0, -1.

С изоспином связан закон сохранения: при сильных взаимодействиях сохраняется как изоспин I, так и его проекция. При электромагнитных — только I z, сам же изоспин I не сохраняется. Слабые взаимодействия протекают как правило с изменением изоспина I.

Выполнение законов сохранения в сильном, электромагнитном и слабом взаимодействиях указано в таблице 17.3 знаком (+), невыполнение законов – знаком (-).

Таблица 17.3

  Закон сохранения   Взаимодействие
сильное электромагнитное слабое
энергии + + +
импульса + + +
момента импульса + + +
электрического заряда + + +
лептонного заряда + + +
барионного заряда + + +
изотопического спина + + -
странности + + -
чётности + + -

Кварки

Обилие открытых и вновь открываемых адронов навела Гелл-Мана и Цвейга (1964 г.) на мысль, что все они построены из каких-то других более фундаментальных частиц. Ими была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых.

В настоящее время практически доказано, что все адроны (мезоны, барионы, резонансы) состоят из кварков — фундаментальных частиц, у которых имеются и античастицы — антикварки. Существуют шесть типов (или ароматов ) кварков: и, d, s, с, b, t (данные об открытии кварка t пока требуют дальнейшего уточнения). Кварки обладают необычными свойствами, прежде всего дробным электрическим зарядом (зарядыантикварков имеют обратный знак). Все кварки имеют спин 1/2 и барионный заряд В = 1/3. Согласно модели Гелл-Мана—Цвейга, все известные в то время адроны можно было построить, постулировав существование кварков и соответствующих им антикварков, если им приписать характеристики, указанные в табл. 17.4.

Таблица 17.4

Кварк   Символ кварка (антикварка) Электрический заряд, Q [ e ] Барионное число, B Спин [ ħ ] Странность, S
Верхний (up)      
Нижний (down)      
Странный (strange)       -1 (+1)
Очарованный (charm)         -1 (+1)
Прелестный (beauty)        
Истинный (truth)  

Согласно кварковой модели, все барионы = 1) состоят из трех кварков, а мезоны (B = 0) — из пары кварк — антикварк. Примеры образования некоторых мезонов и барионов из кварков представлены в табл. 17.5.

 

 

Таблица 17.5.

Мезоны Барионы
Частица Состав Частица Состав
π+ p uud
π-
K + n udd
K -
K 0 Σ + uus
Σ - dds

 

В теории вводятся новые квантовые числа: шарм (очарование) С и красота (прелесть) b. Эти квантовые числа являются аналогами квантового числа странности S. Кварк s является носителем странности, сшарма (очарования), bкрасоты. Квантовые числа С и b сохраняются только в сильных и электромагнитных взаимодействиях. Поскольку квантовые числа С и b присущи немногим, причем экзотическим, частицам (D- и F-мезоны, ΛC-, Λ b -барионы), мы этим и ограничимся.

Соответствующие антикварки отличаются от кварков знаками зарядов Q, В, S, С и b.

Модель кварков удачно описала все многообразие адронов, в том числе и некую группировку их по свойствам. В модели кварков предполагается наличие у кварков ранее неведомого заряда. Этот заряд должен был иметь три различных значения, в отличие от элементарного электрического заряда, принимающего два значения ±1. Новый заряд назвали цветом, а его значения — условно красным, синим и желтым. Наблюдаемые адроны цветового заряда не имеют, т. е. они «бесцветны». Отсюда следуют свойства цветового заряда: 1) любой цвет компенсируется антицветом (чтобы объяснить бесцветность мезонов, состоящих из кварка и антикварка) и 2) смесь всех трех цветов дает бесцветное («белое») состояние — это нужно для объяснения бесцветности адронов, состоящих из трех кварков. Т. е. протон, например, состоит из красного кварка и, синего кварка и и желтого кварка d, так что в целом он нейтрален по отношению к цветовому заряду («бесцветен»). Пи-плюс-мезон π+ состоит, скажем, из красного кварка и и антикрасного антикварка и тоже «бесцветен».

Следует подчеркнуть, что цветовой заряд кварков ничего общего, кроме аналогии, не имеет с обычным цветом, где любые оттенки могут быть получены смешиванием трех базовых цветов. В 1976г. М. Гелл-Манн построил квантовую теорию цветовых взаимодействий. Согласно этой теории (ее назвали квантовой хромодинамикой ) цветовой заряд порождает особое поле, подобно тому, как заряд электрический порождает электрическое поле. Кванты этого поля называются глюонами (от англ. glue— клей), так как они «склеивают» кварки в адронах. Роль глюонов сводится к «перекрашиванию» кварка. Глюон несет пару цветов (например, синий и антикрасный). Такой глюон, при поглощении красным кварком, компенсирует красный цвет и окрашивает кварк в синий, в результате чего кварки удерживаются вместе. Поэтому при испускании и поглощении глюонов цвет кварков изменяется, но их аромат при этом сохраняется. Например, u -кварк не превращается в s -кварк. Согласно модели цветных кварков, последние, не нарушая бесцветности адронов, беспрестанно изменяют в них свою окраску.

Таким образом, в квантовой хромодинамике взаимодействие между кварками осуществляется путем обмена безмассовыми частицами - глюонами. Наблюдаемые адроны (мезоны и барионы) составлены из «бесцветных» комбинаций кварков, а наблюдаемые сильные взаимодействия между ними — это «остаток» цветового взаимодействия кварков, входящих в их состав.

Ряд экспериментальных данных указывает с несомненностью на реальное существование кварков. К их числу относятся результаты изучения рассеяния быстрых электронов нуклонами и другими адронами. Анализ полученных результатов привел к заключению, что внутри адронов электроны рассеиваются на точечных частицах с электрическими зарядами +2/3 и -1/3, причем эти частицы (кварки) ведут себя как бесструктурные точечные элементы.

Вместе с тем все попытки наблюдать кварки в свободном состоянии оказались безуспешными. Это привело к выводу, что кварки могут существовать только внутри адронов и в принципе не могут наблюдаться в свободном состоянии. Появился даже применительно к кваркам термин конфайнмент (от английского confinement, что означает тюремное заключение). Причиной конфайнмента является необычное поведение сил взаимодействия кварков друг с другом. При малых расстояниях эти силы крайне малы, так что кварки оказываются практически свободными (это состояние называется асимптотической свободой). Однако с увеличением расстояний между кварками силы взаимодействия очень быстро растут, не позволяя кваркам вылететь из адрона.

В настоящее время лептоны и кварки считают фундаментальными частицами. Всего к настоящему времени обнаружено уже три пары лептонов и, в составе адронов, три пары кварков. Эти пары частиц называют поколениями. Каждой паре кварков в поколении должна соответствовать пара лептонов. Число пар лептонов и кварков должно совпадать, иначе окажется противоречивой другая теория, объединяющая электромагнитные и слабые взаимодействия. Таким образом, современная таблица (табл. 17.6) для свойств фундаментальных частиц имеет простой вид.

Таблица 17.6

Поколения       Электрический заряд
Кварки u c t 2/3
  d s b -1/3
Лептоны ν е ν μ ν τ  
  е μ τ -1

Стандартная теория

Электрослабые взаимодействия. Вайнберг, Глэшоу и Салам (70-ые годы XX столетия) создали единую теорию электрослабых(т. е. электромагнитных и слабых) взаимодействий. Из этой теории вытекает, что переносчиком слабых взаимодействий является группа частиц, получивших название промежуточных векторных бозонов. В эту группу входят две заряженные частицы (W+ и W-) и одна нейтральная (Z0) (W — первая буква английского слова weak — слабый). Таким образом, слабые взаимодействия подобны электромагнитным, переносчиками которых также являются векторные бозоны — фотоны. Векторными называются частицы со спином, равным единице (и отрицательной четностью). Вотличие от фотона, эти частицы весьма массивны, что объясняет проявление слабых взаимодействий на очень коротких расстояниях (см. табл. 17.1), в отличие от дальнодействующих электромагнитных.

Промежуточные бозоны, обнаруженные в 1982— 1983 гг, — нестабильные частицы. Характерные схемы распада промежуточных бозонов имеют вид

(17.10)

Бета-распад происходит за счет слабого взаимодействия. Следовательно, в нем должен участвовать промежуточный бозон. В соответствии с этим, например, распад нейтрона

, (17.11)

в действительности представляет собой двухступенчатый процесс:

затем (17.12)

Стандартная модель. Теория взаимодействия фундаментальных частиц (шести кварков и шести лептонов плюс такое же число их античастиц), обменивающихся глюонами (сильные взаимодействия), фотоном и тройкой бозонов (электрослабые взаимодействия) известна как Стандартная теория, или Стандартная модель. Она синтезирует современные представления обо всех элементарных частицах и трех фундаментальных взаимодействиях — сильном, электромагнитном и слабом. Гравитационное взаимодействие модель не рассматривает, поскольку его влияние в процессах физики частиц при достигнутых энергиях пренебрежимо мало. Стандартная теория основана на совокупности экспериментальных данных и на их интерпретации, даваемой теорией электрослабого взаимодействия и квантовой хромодинамикой.

 



Поделиться:


Последнее изменение этой страницы: 2016-08-14; просмотров: 230; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.136.154.103 (0.016 с.)