Элементы геометрической оптики. Законы отражения и преломления света. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Элементы геометрической оптики. Законы отражения и преломления света.



Элементы геометрической оптики. Законы отражения и преломления света.

C=3*108м/с – скорость света в вакууме

υ = C/n, где n – абсолютный показатель преломления среды

Т.к. υ≤C, то n≥1

В вакууме υ=с; n=1.

n↑ - оптически более плотная среда, - υ↓

α γ

 


n1; υ1=C/n1

n2; υ2=C/n2

 


β

-α= γ

-sinα/sinβ= υ12= C/n1*n2/C = n2/n1

-если n1<n2; sinβ<sinα à β<α

 

Полное внутреннее отражение. Понятие о волоконной оптике и ее применение в медицине

1

α γ

2

 

3 3

3 преломленного - нет

β

 

n1>n2

α↑àβ↑

sinα/sinβ=n2/n1

β>α

-если α= α пред, то β=900

-если α> α пред, то β – отсутствует

Полное внутреннее отражение – это явление, в котором отсутствует преломленный луч, и свет полностью отражается от границы раздела. Луч во вторую среду не проходит. Первая среда должна быть оптически более плотной.

Найдем αпред

sinα пред /sinβ= π/2 = sinα пред /sin900 = sinα пред /1 = n2/n1

sinα пред = n2/n1

α пред = arcsin n2/n1

Явление полного отражения используется в волоконной оптике.

Волоконная оптика – это раздел оптики, в котором рассматривается передача света и изображения по светопроводам и волноводам оптического диапазона, в частности по многожильным световодам и пучкам гибких волокон.

Волоконно-оптическая связь - это вид связи, при котором информация передается по оптическим волноводам, известным под названием "оптическое волокно".

Оптическое волокно считается одной из самых совершенных физических сред для передачи информации, а также самой перспективной средой для передачи больших объемов информации (в основном потоковой) на большие расстояния. Оптоволокно обладает отличными физическими характеристиками, очень высокой устойчивостью к электромагнитным и радиочастотным помехам.

Оптоволокно классифицируется на одномодовое и многомодовое.

Термин "одномодовый" означает, что тонкая сердцевина световода может передавать только один световой несущий сигнал. Одномодовое оптоволокно передает свет только с одной модой, но в результате сигнал может передаваться на большие расстояния без повторителей - устройств для ретрансляции и усиления сигнала. Проблема в том, что как само одномодовое оптоволокно, так и электронные компоненты для передачи и приема света стоят дороже, чем для многомодового. Пропускная способность одномодового оптоволокна превышает 10 Гбит/с.

Многомодовое оптоволокно может передавать несколько мод (независимых световых путей) с различными длинами волн или фазами. Однако больший диаметр сердцевины приводит к тому, что вероятность отражения света от внешней поверхности сердцевины повышается, а это чревато уменьшением пропускной способности и максимального расстояния между повторителями. Грубо оценивая, максимальная пропускная способность многомодового оптоволокна составляет около 2,5 Гбит/с.

 


n2

 

 


n1

Оптические линзы. Основные определения

Линзы – прозрачные, пропускающие свет тела, ограниченные криволинейными поверхностями (n линзы ≠ nотр среды).

Различают по конструкции:

-сферические

-цилиндрические

По характеру действия:

-собирающие

-рассеивающие

Собирающие линзы – преобразующие параллельный пучок света в сходящийся.

Рассеивающие линзы – преобразующие параллельный пучок света в расходящийся.

Линза определенной конструкции м/б как собирающей, та ки рассеивающей, в зависимости от n линзы и n окружающей среды.

 

  nЛ>nокр. ср   nЛ<nокр. ср       nЛ<nокр. ср         nЛ>nокр. ср  

O

F F


1/F=D

1дптр= m-1

 

      О F F   a     Фокальная плоскость т.а – побочный фокус   а     О F F      

Построение изображения в линзах

      P О P` F F               P Р`` O F F а    

т. P – является изображением.

т. P` – действительное изображение т.Р, если она образована пересечением самих лучей, сходящихся в ней, после преломления в линзе.

т. Р`` - мнимое изображение т.Р, если она образована пересечением продолжения луча в обратную сторону.

N`

 

 


N

O

P` F P F

 

P` - мнимое; увеличенное

d<F

 

Оптическая система глаза

Оптическая система глаза содержит:

- Светопреломляющие среды (роговица (1); водянистая влага впереди камеры (2); хрусталик (3); стекловидное тело (4))

- Световоспринимающие среды – на ней образуется изображение предмета (сетчатка (5))

Для построения изображения предмета пользуются приведенным глазом, который рассматривает все преломляющие среды, как однородную сферическую собирающую линзу с показателем преломления n=1.4.

 

 


1 2 3 О 4 F 5

 

 

 


6.8 мм 16мм 0.6мм

 


23.4 мм

F=16мм=0,016м

D=1/F=1/0.016=62.5 дптр

 


N

 


β O P`

P 2F F F 2F

N`

 

d F

P` - действительное; уменьшенное; перевернутое

P`N`/f=PN/d=tgβ

P`N`=f*tgβ

Для глаза: f=const

Угол β – угол зрения – это угол м/у лучами идущими от крайних точек предмета ч/з оптический центр.

У каждого человека есть β – минимальное.

В норме βmin=1 мин=1`.

Острота зрения – м/т рассматриваться как способность и как величина.

-это способность видеть раздельно 2 близкие точки предмета (разрешающая способность глаза)

-как величина – это βmin нормы/βmin данного человека = 1` - острота зрения.

 

Аккомодация (приспособление)

1/d+1/f=1/F, для человека f=const; меняется лишь фокусное расстояние F.

Процесс изменения фокусного расстояния глаза для четкого видения предмета на разных расстояниях осуществляется путем изменения кривизны хрусталика, происходи рефлекторно и без участия сознания.

Без аккомодации изображение попадает на сетчатку.

dmin – предел аккомодации.

 

Волновая оптика. Свет как электромагнитные волны. Некогерентность обычных источников света

 


λ радио ИК ВИД УФ Re γ ν

Волновая оптика – это часть теории электромагнитных волн Максвелла.

Свет, в узком смысле – это то же, что и видимое излучение, т.е. ЭМ волны в интервале частот воспринимаемых человеческим глазом; причем различие в частоте воспринимается как различие в цвете от красного до фиолетового.

Свет, в широком смысле – это то же, что и оптическое излучение, которое включает в себя кроме видимого еще и ИФК и УФ.

В ЭМ волне колеблются векторы:

E – вектор напряженности Э.П.

H – вектор напряженности М.П.

Т.к. фотохимическая, физиологическая и ряд других действий света, вызываются колебаниями вектора E, то его называют световым вектором.

Уравнение плоской гармонической волны вектора Е:

E= Emax * sinW(t-x/υ), где Emax – амплитуда; W – циклическая частота 2πν; t – время; x – координаты точки на линии распространения волны; υ – скорость волны в среде (υ=с/n).

Отметим, что в этом уравнении есть уравнение волны, излучаемой одним отдельным атомом источника света.

Свет от источника – это есть наложение огромного числа ЭМ волн, изучаемых атомами макроисточника света (свет тела).

В обычных (за исключением лазеров), источниках света, атомы излучают несогласованно (с разными фазами/частотами), вследствие чего условие когерентности (постоянства во времени разности фаз, разными частотами) не выполняется.

Поэтому говорят, что обычные источники света некогерентны.

 

 

Интерференция света. Проблема и методы наблюдения интерференции света от обычных (некогерентных) источников света

Интерференция света – это явление наложения когерентных ЭМ волн, вследствие чего происходит перераспределение энергии этих волн в пространстве.

Для обычных источников света – ЭМ волны некогерентны.

В естественных условиях мы не наблюдаем интерференционной картины, в виде чередования светлых (max) и темных (min) участков в окружающем нас пространстве.

Однако, ряд ученых наблюдали интерференцию света, используя для этого специальные методы, в основе которых лежит следующее:

-создание узкого светового пучка

-разделение его на 2 или более части

-заставить эти части идти разными путями (создать разность хода)

-вновь наложить

 

-если вектора E1 и E2 сонаправлены, то происходит усиление результирующего поля

-если вектора E1 и E2 разнонаправлены, то происходит ослабление результирующего поля

-если вектора E1 и E2 равны и разнонаправлены, то в точке идеальный min.

Рассмотрим метод Юнга

 

 


O1

 


* O max

 


O2

P

 

 

Рассмотрим проекцию т.Р на экране.

Пусть ОО1=ОО2

О1P= r1

О2Р= r2

∆r = r1-r2

Условия max: ∆r = 2kλ/2

Условия min: ∆r = (2k+1)λ/2, где k=0,+-1 и т.д.

Также используются метод тонких пленок; метод направления на зеркала стоящие под углом.

 

Понятие об интерферометре и интерференционном микроскопе

Интерференционный микроскоп – сочетание интерферометра и микроскопа.

Используется:

-условия max: ∆=2k*λ0/2

-условия min: ∆=2k+1* λ0/2, где ∆=r1n1-r2n2 – называется оптической разностью хода; ∆r – геометрическая разность хода; rn= l – оптическая длина пути.

Принцип работы интерферометра:

R1

 

 


А В

 


R2

n2

∆= r1n1 – r2n2

 

 

Просветление оптики

Оптический прибор представляет собой систему большого числа линз, на поверхности каждой из линз происходит отражение и преломление. При отражении света идет потеря энергии и возникновение бликов.

Если уменьшить интерференцию отраженной волны, то на каждую поверхность линзы наносится тонкая пленка вещества с показателем преломления n<nлинзы.

Толщина пленки подбирается таким образом, чтобы в отраженном свете был min, а остальной свет проходил.

 

Поглощение света

Превращение энергии световой волны во внутренние энергии вещества, описывается законом Бугера-Ламберта.

 

 


0(I0) X(I) Xà∆X(I+∆I)

∆ I (∆x)

∆I~α*I*∆x

∆I=-α*I*∆x │:I

∆I/I= -α*∆x

В каждом последующем слое вещества, одинаковой толщины ∆x, поглощается одинаковая часть интенсивности (∆I) падающей на этот слой волны.

I=f(x)

dI/I=-α*dx – ДУ

lnI │I0I = -αx │X0

lnI-lnI0 = -αx

ln(I/I0)= -αx

I/I0=e-αx à I=I0*e-αxматематическое выражение закона Б.-Л.

I

 

I0

 

2 1

 

 

x

x=0 à I=I0 (xà∞; Ià0)

α21

 

Пусть есть раствор какого-либо вещества, которое поглощает свет, а растворитель свет не поглощает.

Сформулируем закон Бера.

α=χ*С, где α – показатель поглощения; С – концентрация раствора; χ – коэффициент пропорциональности.

Формулировка закона Бера:

Рассеивание света

Рассеивание – это явление отклонения светового пучка по всевозможным направлениям.

Возникает в оптически неоднородной среде, когда показатель преломления и нерегулярно меняется от точки к точке, а размеры неоднородностей соизмеримы с длиной волны.

Световой пучок ослабляется.

σ – показатель рассеивания

I=I0*e-(α+σ)x

α+σ =μ – показатель ослабления света.

I=I0*e-μх

Различают 2 основных вида неоднородностей и 2 основных вида рассеивания:

-молекулярное – рассеивание на неоднородностях обусловленных тепловым движением молекул данного прозрачного вещества.

-рассеивание в мутных средах (явление Тиндаля) – рассеивание, когда неоднородности представляют собой неоднородные посторонние частицы (частицы одного вещества, среди частиц другого вещества).

Для молекулярного и рассеивания в мутных средах, если d<0.2λ, справедлив закон Рэлея.

IP~1/λ4

IP4

-если d>0.2λ, то IP~1/λ3

λКРФИОЛ

νКРФИОЛ

Чем λ больше, тем I меньше.

 

Дисперсия света

C=3*108м/с и одинакова в вакууме для всех длин волн.

В веществе волны различных частот движутся с разными скоростями: υ=f(ν), т.к. υ=C/n, то n=f(ν).

Волны различных частот в одном и том же веществе преломляются по разному.

Дисперсия света – это зависимость показателя преломления вещества от частоты.

-если ↑νàn↑ - нормальная дисперсия

-если ↑νàn↓ - аномальная

 


Кр

Фиол

 

nФИОЛ > nКР – нормальная дисперсия.

В реальном веществе существуют участки нормальной и аномальной дисперсии.

n

 


b d

 


a c e

 

 

ν0 ν1 ν2 ν

-ab, cd – нормальная дисперсия (dn/dν>0)

-bc, de – аномальная дисперсия (dn/dν<0)

Падающая на вещество электроволна взывает вынужденные колебания ē в атомах. Если частота этой волны совпадает с собственной частотой колебания ē, то будет резонанс, т.е. повышается амплитуда колебаний. Преобразуется энергия света во внутреннюю энергию вещества. Происходит поглощение.

Учение о нормальной дисперсии позволяет найти собственные частоты колебаний ē в атомах.

 

 

Элементы геометрической оптики. Законы отражения и преломления света.

C=3*108м/с – скорость света в вакууме

υ = C/n, где n – абсолютный показатель преломления среды

Т.к. υ≤C, то n≥1

В вакууме υ=с; n=1.

n↑ - оптически более плотная среда, - υ↓

α γ

 


n1; υ1=C/n1

n2; υ2=C/n2

 


β

-α= γ

-sinα/sinβ= υ12= C/n1*n2/C = n2/n1

-если n1<n2; sinβ<sinα à β<α

 



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 143; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 44.210.107.64 (0.162 с.)