Моделирование природных процессов в решении экологических проблем 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Моделирование природных процессов в решении экологических проблем



Надорганизменные системы (популяции, биоценозы, экосистемы, биосфера), изучаемые экологией, чрезвычайно сложны. В них возникает большое количество взаимосвязей, сила и постоянство которых непрерывно меняются. Одни и те же внешние воздействия нередко приводят к различным, а иногда и к противоположным результатам. Это зависит от состояния, в котором находилась система в момент воздействия. На действие конкретных факторов предвидеть ответные реакции системы можно только через сложный анализ существующих в ней количественных взаимоотношений и закономерностей. Поэтому широкое распространение в экологии получило моделирование, особенно при изучении и прогнозировании природных процессов.

Термин «модель-» имеет целый ряд смысловых значений:

1) физическое (вещественно-натуральное) или знаковое (математическое, логическое) подобие (обычно упрощенное) реального объекта, явления или процесса; 2) уменьшенное подобие реального объекта; отличают действующую модель и только имитирующую форму чего-то (макет); 3) схема, изображение или описание какого-либо явления или процесса в природе и обществе.

В экологии под моделью довольно часто понимается материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал, и его непосредственное изучение дает новые знания об объекте-оригинале. Модель неизбежно упрощает действительность и в то же время показывает особенно ярко элементы и связи, интересующие ученого.

Моделирование — метод исследования сложных объектов, явлений и процессов путем их упрощенного имитирования (натурного, математического, логического). Основывается на теории подобия (сходства) с объектом-аналогом.

Требования, предъявляемые к моделям. Важнейшие требования к любой модели — ее подобие с моделируемым предметом и наличие следующих свойств:

— модель — это увеличенное (клетка) или уменьшенное (глобус) подобие объекта;

— модель может замедлить быстро протекающие процессы или ускорить медленно протекающие;

— модель упрощает реальный процесс, что дает возможность обратить внимание на главную сущность объекта.

Виды моделей. Модели принято делить на две группы: материальные (предметные) и идеальные (мысленные)

Из материальных моделей наиболее широко распространены в природопользовании физические модели. Например, при создании крупных проектов, таких, как строительство ГЭС, связанных с изменениями окружающей природной среды. Вначале строятся уменьшенные модели устройств и сооружений, на которых исследуются процессы, происходящие при заранее запрограммированных воздействиях.

Во второй половине XX в. среди видов моделей в экологии все большее значение приобретают идеальные: математические, кибернетические, имитационные, графические модели.

Суть математического моделирования заключается в том, что с помощью математических символов строится абстрактное упрощенное подобие изучаемой системы. Далее, меняя значение отдельных параметров, исследуют, как поведет себя данная искусственная система, т. е. как изменится конечный результат.

Математические модели, строящиеся с применением ЭВМ, называют кибернетическими.

Исследования, в которых ЭВМ играет важную роль в самом процессе построения модели и проведения модельных экспериментов, получили название имитационного моделирования, а соответствующие модели — имитационных.

Графические модели представляют блоковые схемы (рис. 21.4) или раскрывают зависимость между процессами в виде таблицы-графика. Графическая модель позволяет конструировать сложные эко- и геосистемы.

По охвату территории все модели могут быть: локальными, региональными и глобальными.

В построении математических моделей сложных природных процессов выделяются следующие этапы.

1. Реальные явления, которые планируется смоделировать, должны быть тщательно изучены: выявлены главные компоненты и установлены законы, определяющие характер взаимодействия между ними. Если неясно, как связаны между собой реальные объекты, построение адекватной модели невозможно. На данном этапе нужно сформулировать вопросы, на которые ответ должна дать модель. Прежде чем строить математическую модель природного явления, надо иметь гипотезу о его течении.

2. Разрабатывается математическая теория, описывающая изучаемые процессы с необходимой деятельностью. На ее основе строится модель в виде абстрактных взаимодействий. Установленные законы должны быть облечены в точную математическую форму. Конкретные модели могут быть предоставлены в аналитической форме (системой аналитических уравнений) или в виде логической схемы машинной программы. Модель природного явления есть строгое математическое выражение сформулированной гипотезы.

3. Проверка модели — расчет на основе модели и сличения результатов с действительностью. При этом проверяется правильность сформулированной гипотезы. При значительном расхождении сведений модель отвергают или совершенствуют. При согласованности результатов модели используют для прогноза, вводя в них различные исходные параметры.

В качестве научной основы природопользования используется модель геосистемы (географической системы). Эта модель применяется в природопользовании для прогнозирования, а также с целью управления природопользованием посредством воздействия на один компонент для получения положительного эффекта от другого.

Природная геосистема рассматривается обычно как сравнительно простая географическая модель, саморегулирующаяся система. Ее целостность поддерживается взаимосвязью природных компонентов. В более сложные модели в качестве нового элемента вводится человек (общество),

Человек способен не только приспосабливаться к природной геосистеме, но и ее преобразовывать. Использование таких моделей является типичным при изучении систем типа «человек — среда». Используя данные модели, можно проследить цепочку: воздействия на природный комплекс  изменение комплекса  последствия изменения природы для человеческой деятельности  изменение деятельности  изменение ее воздействия на природу и т. д.

В природно-технических системах техника и природа представлены как элементы одной системы (рис. 21.5Б).

Подход, в котором природа и техника рассматриваются как элементы одной системы, несомненно, способен углубить представления о механизме взаимодействия, выявить последствия воздействия техники на природу. Здесь представление о геосистеме как системе самоуправляемой относительно быстро меняется на представление о ней как системе управляемой.

Геосистема, включающая в качестве своих элементов население и орган управления, который принимает и контролирует решения, называется интегральной (рис. 21.5В). Для рационального природопользования это очень важно, так как ставится задача выработки системы мер по сохранению целостности геосистемы.

Экологический мониторинг

Экологический мониторинг (мониторинг окружающей среды) — это комплексная система наблюдений за состоянием окружающей среды, оценки и прогноза изменений состояния окружающей среды под воздействием природных и антропогенных факторов.[1]

Обычно на территории уже имеется ряд сетей наблюдений, принадлежащих различным службам, и которые ведомственно разобщены, не скоординированы в хронологическом, параметрическом и других аспектах. Поэтому задача подготовки оценок, прогнозов, критериев альтернатив выбора управленческих решений на базе имеющихся в регионе ведомственных данных становится, в общем случае, неопределенной. В связи с этим, центральными проблемами организации экологического мониторинга являются эколого-хозяйственное районирование и выбор «информативных показателей» экологического состояния территорий с проверкой их системной достаточности

Виды мониторинга

В общем виде процесс экологического мониторинга можно представить схемой: окружающая среда (либо конкретный объект окружающей среды) -> измерение параметров -> сбор и передача информации -> обработка и представление данных, прогноз. Измерение параметров, сбор и передачу информации, обработку и представление данных осуществляет система мониторинга. Система экологического мониторинга предназначена обслуживать систему управления качеством окружающей среды (далее для краткости «система управления»). Информация о состоянии окружающей среды, полученная в системе мониторинга, используется системой управления для устранения негативной экологической ситуации или уменьшения неблагоприятных последствий изменения состояния окружающей среды, а также для разработки прогнозов социально-экономического развития, разработки программ в области экологического развития и охраны окружающей среды.

В системе управления можно также выделить три подсистемы: принятие решения (специально уполномоченный государственный орган), управление выполнением решения (например, администрация предприятий), выполнение решения с помощью различных технических или иных средств.

Системы мониторинга или его виды различаются по объектам наблюдения. Поскольку компонентами окружающей среды являются воздух, вода, минерально-сырьевые и энергетические ресурсы, биоресурсы, почвы и др., то выделяют соответствующие им подсистемы мониторинга. Однако, подсистемы мониторинга не имеют единой системы показателей, единых подходов для районирования территорий, периодичности отслеживая и др., что делает невозможным принятие адекватных мер при управлении развитием и экологическим состоянием территорий [3]. Поэтому при принятии решений важно ориентироваться не только на данные "частных систем" мониторинга(гидрометеослужбы, мониторинга ресурсов, социально-гигиенического, биоты и др.), а создавать на их основе комплексные системы экологического мониторинга.

Уровни мониторинга

Мониторинг является многоуровневой системой. В хорологическом аспекте обычно выделяют системы (или подсистемы) детального, локального, регионального, национального и глобального уровней [1,2].

Низшим иерархическим уровнем является уровень детального мониторинга реализуемого в пределах небольших территорий (участков) и т.д.

При объединении систем детального мониторинга в более крупную сеть (например, в пределах района и т.п.) образуется система мониторинга локального уровня. Локальный мониторинг предназначен обеспечить оценку изменений системы на большей площади: территории города, района.

Локальные системы могут объединяться в более крупные – системы регионального мониторинга, охватывающие территории регионов в пределах края или области, или в пределах нескольких из них. Подобные системы регионального мониторинга, интегрируя данные сетей наблюдений, различающихся по подходам, параметрам, территориям отслеживания и периодичности, позволяют адекватно формировать комплексные оценки состояния территорий и давать прогнозы их развития.

Системы регионального мониторинга могут объединяться в пределах одного государства в единую национальную (или государственную) сеть мониторинга, образуя, таким образом, национальный уровень) системы мониторинга. Примером такой системы являлась "Единая государственная система экологического мониторинга Российской Федерации" (ЕГСЭМ) и ее территориальные подсистемы, успешно создаваемые в 90-е годы ХХ века для адекватного решения задач управления территориями. Однако, вслед за Министерством экологии в 2002г ЕГСЭМ была также упразднена и в настоящее время в России имеются лишь ведомственно-разрозненные сети наблюдений, что не позволяет адекватно решать стратегические задачи управления территориями с учетом экологического императива.

В рамках экологической программы ООН поставлена задача объединения национальных систем мониторинга в единую межгосударственную сеть - «Глобальную систему мониторинга окружающей среды» (ГСМОС). Это высший глобальный уровень организации системы экологического мониторинга. Ее назначение - осуществление мониторинга за изменениями в окружающей среде на Земле и ее ресурсами в целом, в глобальном масштабе. Глобальный мониторинг - это система слежения за состоянием и прогнозирование возможных изменений общемировых процессов и явлений, включая антропогенные воздействия на биосферу Земли в целом. Пока создание такой системы в полном объеме, действующей под эгидой ООН, является задачей будущего, так как многие государства не имеют еще собственных национальных систем.

Глобальная система мониторинга окружающей среды и ресурсов призвана решать общечеловеческие экологические проблемы в рамках всей Земли, такие как глобальное потепление климата, проблема сохранения озонового слоя, прогноз землетрясений, сохранение лесов, глобальное опустынивание и эрозия почв, наводнения, запасы пищевых и энергетических ресурсов и др. Примером такой подсистемы экологического мониторинга является глобальная наблюдательная сеть сейсмомониторинга Земли, действующая в рамках Международной программы контроля за очагами землетрясений и др.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 412; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.141.202 (0.012 с.)