![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Коэффициент корреляции как характеристика статистической связи. Некоррелированность и независимость случ. величин.Содержание книги
Поиск на нашем сайте
В качестве меры линейной зависимости между случ. величинами X и Y используют коэффициент корреляции, вычисляемый по формуле Св-ва коэфиициента корреляции: 1. Док-во: рассмотрим систему 2-ух случ. вел: (X,Y) Проведем нормировку (стандартизацию), т.е. M[X]= mx D[X]=σx2 Xxнормиров= M[Y]=my D[Y]= σy2 Yyнормиров= Cov(Xx,Yy)=M[{ 2. Если X и Y – незав. случ. вел, то 3.Если X и Y связаны линейной функциональной зависимостью: Y=aX+b, где a,b – const, a≠0,то Док-во: Т.к M[Y]=aM[X]+b=amx+b, то имеем cov(X,Y)=M[(X-mx)*(Y-my)]=M[(X-mx)(aX+b-amx-b)]=M[(X-mx)a(X-mx)]=aD[X] Вычислим дисперсию случ. вел. Y=aX+b D[Y]=D[aX+b]=a2D[X] Таким образом, коэффициент корреляции равен:
Т.е коэффициент корреляции является показателем линейной зависимости, но если ρxy=0. это не значит,что между ними нет никакой связи, это значит, что нет линейной зависимости. Если коэффициент корреляции между случ. вел. X и Y равен 0, то говорят, что X и Y некоррелированны. Некоррелированность случ. вел X и Y означает только, что между ними нет линейной зависимости и не означает статистическую независимость случ. вел X и Y.
16.Системы 2-ух непрерывных случ. вел. Определение ф=ции распределения и плотности, условные распределения, зависимость и независимость случ. вел. Числовые характеристики. Пусть на вероятностном пр-ве (Ω,F,P) заданы непрерывные случ. вел X1=X1(ω), X2=X2(ω),.., Xn=Xn(ω), ω Опр Совместной ф-цией распределения F(x1, x2,…, xn) случ. вел X1,X2,..,Xn наз-ся вероятность события [X1<x1;X2,x2;…;Xn<xn]: F(x1, x2,…, xn) =P [X1<x1;X2,x2;…;Xn<xn] Фукция распределения: F(X,Y)=P[X<x,Y<y] Если пользоваться геом. интерпретацией системы образом случ. точки, то ф-ция распред. есть не что иное, как вер-ть попадания случ точки (X,Y) в бесконечный квадрат с вершиной в точке (x,y), лежащий левее и ниже ее.(Лекция 12, рис) ()ки, то ф-ция распред. Е 1.Ф-ция распред. Есть неубывающая ф-ция обоих своих аргументов,т.е При x2>x1, F(x2,y)≥ F(x1,y) При y2>y1 F(x,y2) ≥F(x,y1) 2.Повсюду на -∞ ф-ция распред. равна нулю: F(x,-∞)= F(-∞,y)= F(-∞,-∞)=0 3. F(x,+∞)=F1(x1(): распред. я обоих своих аргументов,т.е), F(+∞,y)=F2(y) 4. F(+∞,+∞)=1
2()Неотрицательная ф-ция n переменных f(x1, x2,…, xn) наз-ся совместной плотностью распределения случ. величин X1,X2,..,Xn, если их совместная ф-ция распределения может быть представлена в виде F(x1, x2,…, xn) =
Плотность распределения имеет след. св-ва: 1. f(x1, x2,…, xn) ≥; (это ясно из того, что плотность распред. есть предел отношения двух неотриц. величин: вероятности попадания в прямоугольник и площади прямоугольника) 2. 3.Если ф-ция определена, вектор попадет в некоторую область,тогда вер-ть определяется: P[(x1,x2,..,xn) Зная совместную плотность распределения f(x1, x2,…, xn) случ. вел X1,X2,..,Xn можно найти плотность распред. каждой случ. вел. Для двумерного вектора (X1,X2) с плотностью f(x1, x2) распределение случ. вел X1, f1(x1) равна f1(x1) = Опр Случ. величины X1,X2,..,Xn наз-ся независимыми, если для любых действительных переменных x1, x2,…, xn, F(x1, x2,…, xn) =F1(x1)* F2(x2)*…* Fn(xn), где Fi(xi)-ф-ция распред. случ. вел Xi, i=1,2..,n Равносильное определение независимости случайных величин X1,X2,..,Xn записывается так f(x1, x2,…, xn) =f1(x1)* f2(x2)*…* fn(xn), где fi(xi)-плотность распред. случ вел. Xi, i=1,2..,n f1(x)= f2(y)=
X и Y независимы, если X и Y независимы, если f(X/Y)= f1(x); f(Y/X)= f2(y) Условные плотности распределения. Распределение Y, если X принимает какое-либо значение f(Y/X) Распределение X, если Y принимает какое-либо значение f(X/Y)
|
|||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 213; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.134.80.24 (0.009 с.) |