Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тестування гетероскедастичності. Графічний аналіз випадкових відхилень.Содержание книги
Поиск на нашем сайте
Тестування гетероскедастичності. Інколи на підставі знань про характер статистичних даних появу проблеми гетероскедастичності можна передбачати і спробувати її усунути ще на етапі специфікації кореляційно-регресійної моделі, провівши глибокий аналіз досліджуваної проблеми. Проте значно частіше цю проблему доводиться вирішувати після побудови кореляційно-регресійної моделі. Виявлення гетероскедастичності у кожному разі є досить складним завданням, оскільки для знання дисперсій відхилень потрібно знати закон розподілу випадкової величини ε, що відповідає вибраному значенню . Дуже часто на практиці для кожного конкретного значення хi визначають лише одне значення уі, що не дає можливості оцінити дисперсію випадкових величин ε для даного хi Графічний аналіз випадкових відхилень: По осі абсцис відкладають значення факторної ознаки xi (або значення лінійної комбінації факторних ознак ), а по осі ординат — або відхилення еі або їх квадрати еi2. Приклади таких графіків наведені на рис. Такі графіки дають можливість проаналізувати, чи квадрати випадкових відхилень еi2 систематично залежать від упорядкованих значень факторної ознаки чи не залежать. На рис., а всі квадрати відхилень еі містяться всередині смуги постійної ширини, паралельної осі абсцис. Це свідчить про незалежність дисперсій параметрів регресії від значень змінної х та їх постійність, тобто наявне явище гомоскедастичності. На рис., б — д можна спостерігати деякі систематичні зміни у співвідношеннях між значеннями змінної хі і квадратами відхилень . Наприклад, на рис., в зображена лінійна, рис., г — квадратична, рис., д — гіперболічна залежності між квадратами відхилень і значеннями факторної змінної х. Таким чином, рис., б — д підтверджує ймовірність наявності гетероскедастичності. Слід зазначити, що на практиці здебільшого замість факторних ознак xi по осі абсцис відкладають значення які одержують із вибіркової кор.-рег. моделі. Оскільки, згідно з множинною кор.-рег. моделлю, є лінійною комбінацією значень факторних ознак Хji то графік, що відображає залежність від , може вказати на наявність гетероскедастичності, так, як у прикладах, зображених на рис., б — д. Такий аналіз найдоцільніше проводити при великій кількості факторних ознак.
1 9. Суть та наслідки мультиколінеарності Мультиколінеарність — це явище, при якому під час побудови множинної кореляційно-регресійної моделі наявний лінійний взаємозв'язок між двома або більше, факторними ознаками. Досконалою мультиколінеарністю називають явище, коли між факторними ознаками є функціональна залежність. На практиці реальнішою є ситуація, коли між факторними ознаками існує не функціональна, а досить тісна кореляційна залежність. Наявність такої залежності називають недосконалою мультиколінеарністю. Мультиколінеарність негативно впливає на кількісні характеристики економетричної моделі, унеможливлює її побудову. Зокрема, наявність колінеарності між факторними ознаками призводить до зміщення оцінок параметрів моделі, на підставі яких неможливо зробити конкретні висновки про результати взаємозв'язку результуючої змінної з факторними ознаками. Основними причинами виникнення мультиколінеарності є: 1. Одночасна зміна в одному напрямі деяких економічних показників. Якщо два колінеарні фактори змінюються в одному напрямі, то майже неможливо оцінити окремий вплив кожного з них на досліджуваний показник у. 2. Використання в економетричних моделях лагових значень однієї і тієї самої змінної. Наприклад, в економічних дослідженнях використовують інвестиційні функції, в яких лагові значення попереднього рівня економічної активності вводять як окремі змінні. У разі, коли єдиною метою кореляційно-регресійного аналізу є отримання прогнозних значень економічних показників, то мультиколінеарність не спричиняє проблем, оскільки, що більше факторів містить модель, то вище значення коефіцієнта детермінації R2, а отже, точніший прогноз. Якщо метою економетричного аналізу зв'язку між змінними є визначення оцінок дійсних значень параметрів регресії, а не отримання прогнозних значень, то мультиколінеарність спричиняє появу великих стандартних похибок цих оцінок.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 202; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.67.0 (0.005 с.) |