Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
IV. Графическое изображение интенсивного показателя.Содержание книги
Поиск на нашем сайте
Столбиковая диаграмма
Рис.1.Повозрастная плодовитость женщин детородного возраста.
V. Графическое изображение экстенсивного показателя. Внутристолбиковая диаграмма
Рис.2. Распределение живорожденных по возрасту матери. Секторная диаграмма
Рис. 3. Распределение живорожденных по возрасту матери. ВЫВОД: Анализ интенсивных показателей повозрастной плодовитости женщин детородного возраста города М. показывает, что самый высокий уровень плодовитости приходится на возрастную группу от 20 до 24 лет – 161,2‰, что в 3,5 раз выше показателя общей плодовитости (46,5‰). Самый низкий уровень плодовитости приходится на возрастные группы от 40 до 44 лет – 2,4‰ и от 45 до 49 лет – 1,2‰, что во много раз ниже показателя общей плодовитости женщин (46,5%). Оценивая экстенсивные показатели, можно сделать вывод, что наибольший удельный вес живорождений среди всех женщин детородного возраста приходится на возрастную группу от 20 до 24 лет – 44,5%. А наименьшая доля живорожденных приходится на возрастные группы от 40 до 44 лет – 0,7% и от 45 до 49 лет – 0,2%.
ТАБЛИЦЫ: 1. Виды относительных величин. 2. Графические изображения относительных величин.
МЕТОДИЧЕСКАЯ РАЗРАБОТКА ПРАКТИЧЕСКОГО ЗАНЯТИЯ ДЛЯ СТУДЕНТОВ, ОБУЧАЮЩИХСЯ НА СПЕЦИАЛЬНОСТИ «ЛЕЧЕБНОЕ ДЕЛО» ПО ТЕМЕ: ”СРЕДНИЕ ВЕЛИЧИНЫ. МЕТОДИКА ВЫЧИСЛЕНИЯ И ОЦЕНКА ДОСТОВЕРНОСТИ. ПРАКТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ В МЕДИЦИНЕ”
ЦЕЛЬ ЗАНЯТИЯ: овладеть методикой составления вариационных рядов и вычисления средних величин при малом (n£30) и большом (n>30) числе наблюдений; овладеть методикой расчета ошибки и доверительных границ средних величин; научиться оценивать достоверность результатов исследования. МЕТОДИКА ПРОВЕДЕНИЯ ЗАНЯТИЯ: 1. определение исходного уровня знаний студентов; 2. разъяснение наиболее сложных для восприятия вопросов. 3. самостоятельная работа студентов: изучение типовых заданий, выполнение заданий. ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:
В медицине, в здравоохранении очень часто используются выражаемые числами признаки, которые могут принимать различные числовые значения у разных единиц совокупности, нередко повторяющиеся у нескольких единиц. Например, пульс, АД, температура тела, длительность временной нетрудоспособности, длительность пребывания в стационаре отличаются (варьируют) у больных даже с одним диагнозом. Полученные при исследовании величины сначала записываются хаотично, т.е. в том порядке, как их получает исследователь. Ряд, в котором упорядоченно сопоставлены (по степени возрастания или убывания) варианты и соответствующие им частоты, называется вариационным. Отдельные числовые значения признака называются вариантами (V), а числа, показывающие, как часто эти варианты повторяются - частотами (Р), общее число наблюдений (n) равно сумме частот (n=SP, S - знак суммы). Вариационный ряд может быть простым или сгруппированным. Простой вариационный ряд составляется при малом числе наблюдений (n£30), а сгруппированный - при большом числе наблюдений (n>30). Построение вариационного ряда из отдельных вариант – это только первый шаг к осмыслению особенностей всей совокупности. Далее для обобщенной числовой характеристики изучаемого признака у совокупности обследуемых рассчитываются средние величины, достоинство которых заключаются в том, что одна величина характеризует большую совокупность однородных явлений. Средняя величина – это число, выражающее общую меру исследуемого признака в совокупности. Различают несколько видов средних величин: мода (Мо), медиана (Ме) и средняя арифметическая (М). Мода (Мо) - наиболее часто повторяющаяся варианта, т.е. та, которой соответствует наибольшее количество частот (Р) вариационного ряда. Медиана (Ме) - варианта, занимающая срединное положение в вариационном ряду. При нечетном числе наблюдений для определения медианы надо найти середину ряда – медианой будет центральная (срединная) варианта. При четном числе наблюдений за медиану принимают среднюю величину из двух центральных вариант. Наиболее часто используется средняя арифметическая величина. Средняя арифметическая имеет 3 основных свойства: 1. Занимает срединное положение в вариационном ряду. В строго симметричном ряду М = Мо = Ме; 2. Имеет абстрактный характер и является обобщающей величиной, вскрывающей то типичное, что характерно для всей совокупности. 3. Алгебраическая сумма отклонений всех вариант от средней равна нулю. Если сумма отклонений вариант от средней равна нулю, то средняя вычислена правильно. На этом свойстве основан расчет средней по способу моментов. Основными способами расчета М являются: 1) среднеарифметический способ – применяется для вычисления средней арифметической простой и средней арифметической взвешенной; 2) способ моментов (условных отклонений) – используется в случаях, когда варианты состоят из многозначных чисел, а совокупность – из большого числа наблюдений. Средняя арифметическая, которая рассчитана в вариационном ряду, где каждая варианта встречается только один раз (для всех вариант р=1), называется средней арифметической простой. Она определяется по формуле: где М – средняя арифметическая, V – значение вариационного признака, n – общее число наблюдений
Если в исследуемом ряду отдельные варианты встречаются различное число раз (р³1), то вычисляют среднюю арифметическую взвешенную. Расчет ее производится по формуле: где Р – частота, n – сумма частот (å P).
При большом количестве наблюдений (n>30) число размеров вариант может быть очень большим, тогда рекомендуется размеры вариант объединять в группы. При составлении сгруппированного вариационного ряда необходимо: 1. определить количество групп в ряду; 2. определить интервал между группами по формуле: ; 3. определить середину интервала – полусумма первых значений соседних групп; 4. распределить изучаемую совокупность по группам; 5. составить графическое изображение вариационного ряда.
Пример определения средней арифметической в сгруппированном вариационном ряду представлен ниже.
|
|||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 390; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.180.152 (0.01 с.) |